版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省茂名市五校联考2025届数学高一下期末监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设实数满足约束条件,则的最大值为()A. B.9 C.11 D.2.化为弧度是A. B. C. D.3.已知,则的值为()A. B. C. D.4.若圆与圆外切,则()A.21 B.19 C.9 D.-115.已知函数在上是x的减函数,则a的取值范围是()A. B. C. D.6.如图,将边长为的正方形沿对角线折成大小等于的二面角分别为的中点,若,则线段长度的取值范围为()A. B.C. D.7.在前项和为的等差数列中,若,则=()A. B. C. D.8.已知点A(﹣1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是()A.(0,1) B. C. D.9.长方体中的8个顶点都在同一球面上,,,,则该球的表面积为().A. B. C.50 D.10.某种产品的广告费用支出与销售额之间具有线性相关关系,根据下表数据(单位:百万元),由最小二乘法求得回归直线方程为.现发现表中有个数据看不清,请你推断该数据值为()345582834★5672A.65 B.60 C.55 D.50二、填空题:本大题共6小题,每小题5分,共30分。11.用列举法表示集合__________.12.函数f(x)=sin22x的最小正周期是__________.13.等差数列{}前n项和为.已知+-=0,=38,则m=_______.14.已知向量、满足,,且,则与的夹角为________.15.设数列的通项公式为,则_____.16.不共线的三个平面向量,,两两所成的角相等,且,,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,已知的斜边长,现以斜边横在直线为轴旋转一周,得到旋转体.(1)当时,求此旋转体的体积;(2)比较当,时,两个旋转体表面积的大小.18.已知为常数且均不为零,数列的通项公式为并且成等差数列,成等比数列.(1)求的值;(2)设是数列前项的和,求使得不等式成立的最小正整数.19.已知向量垂直于向量,向量垂直于向量.(1)求向量与的夹角;(2)设,且向量满足,求的最小值;(3)在(2)的条件下,随机选取一个向量,求的概率.20.已知向量满足,且向量与的夹角为.(1)求的值;(2)求.21.小明同学在寒假社会实践活动中,对白天平均气温与某家奶茶店的品牌饮料销量之间的关系进行了分析研究,他分别记录了1月11日至1月15日的白天气温()与该奶茶店的品牌饮料销量(杯),得到如表数据:日期1月11号1月12号1月13号1月14号1月15号平均气温()91012118销量(杯)2325302621(1)若先从这五组数据中抽出2组,求抽出的2组数据恰好是相邻2天数据的概率;(2)请根据所给五组数据,求出关于的线性回归方程式;(3)根据(2)所得的线性回归方程,若天气预报1月16号的白天平均气温为,请预测该奶茶店这种饮料的销量.(参考公式:,)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】作出约束条件表示的可行域如图,化目标函数为,联立,解得,由图可知,当直线过点时,z取得最大值11,故选:C.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.2、D【解析】
由于,则.【详解】因为,所以,故选D.【点睛】本题考查角度制与弧度制的互化.3、B【解析】sin(π+α)−3cos(2π−α)=0,即:sinα+3cosα=0,①又∵sin2α+cos2α=1,②由①②联立解得:cos2α=.∴cos2α=2cos2α−1=.故选B.4、C【解析】试题分析:因为,所以且圆的圆心为,半径为,根据圆与圆外切的判定(圆心距离等于半径和)可得,故选C.考点:圆与圆之间的外切关系与判断5、C【解析】
由复合函数单调性及函数的定义域得不等关系.【详解】由题意,解得.故选:C.【点睛】本题考查对数型复合函数的单调性,解题时要注意对数函数的定义域.6、A【解析】
连接和,由二面角的定义得出,由结合为的中点,可知是的角平分线且,由的范围可得出的范围,于是得出的取值范围.【详解】连接,可得,即有为二面角的平面角,且,在等腰中,,且,,则,故答案为,故选A.【点睛】本题考查线段长度的取值范围,考查二面角的定义以及锐角三角函数的定义,解题的关键在于充分研究图形的几何特征,将所求线段与角建立关系,借助三角函数来求解,考查推理能力与计算能力,属于中等题.7、C【解析】
利用公式的到答案.【详解】项和为的等差数列中,故答案选C【点睛】本题考查了等差数列的前N项和,等差数列的性质,利用可以简化计算.8、B【解析】
先求得直线y=ax+b(a>0)与x轴的交点为M(,0),由0可得点M在射线OA上.求出直线和BC的交点N的坐标,①若点M和点A重合,求得b;②若点M在点O和点A之间,求得b;③若点M在点A的左侧,求得b>1.再把以上得到的三个b的范围取并集,可得结果.【详解】由题意可得,三角形ABC的面积为1,由于直线y=ax+b(a>0)与x轴的交点为M(,0),由直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,可得b>0,故0,故点M在射线OA上.设直线y=ax+b和BC的交点为N,则由可得点N的坐标为(,).①若点M和点A重合,如图:则点N为线段BC的中点,故N(,),把A、N两点的坐标代入直线y=ax+b,求得a=b.②若点M在点O和点A之间,如图:此时b,点N在点B和点C之间,由题意可得三角形NMB的面积等于,即,即,可得a0,求得b,故有b.③若点M在点A的左侧,则b,由点M的横坐标1,求得b>a.设直线y=ax+b和AC的交点为P,则由求得点P的坐标为(,),此时,由题意可得,三角形CPN的面积等于,即•(1﹣b)•|xN﹣xP|,即(1﹣b)•||,化简可得2(1﹣b)2=|a2﹣1|.由于此时b>a>0,0<a<1,∴2(1﹣b)2=|a2﹣1|=1﹣a2.两边开方可得(1﹣b)1,∴1﹣b,化简可得b>1,故有1b.综上可得b的取值范围应是,故选B.【点睛】本题主要考查确定直线的要素,点到直线的距离公式以及三角形的面积公式的应用,还考查了运算能力以及综合分析能力,分类讨论思想,属于难题.9、C【解析】
根据长方体的外接球性质及球的表面积公式,化简即可得解.【详解】根据长方体的外接球直径为体对角线长,则,所以,则由球的表面积公式可得,故选:C.【点睛】本题考查了长方体外接球的性质及球表面积公式应用,属于基础题.10、B【解析】
求出样本中心点的坐标,代入线性回归方程求解.【详解】设表中看不清的数据为,则,,代入,得,解得.故选:.【点睛】本题考查线性回归方程,明确线性回归方程恒过样本点的中心是关键,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
先将的表示形式求解出来,然后根据范围求出的可取值.【详解】因为,所以,又因为,所以,此时或,则可得集合:.【点睛】本题考查根据三角函数值求解给定区间中变量的值,难度较易.12、.【解析】
将所给的函数利用降幂公式进行恒等变形,然后求解其最小正周期即可.【详解】函数,周期为【点睛】本题主要考查二倍角的三角函数公式、三角函数的最小正周期公式,属于基础题.13、10【解析】
根据等差数列的性质,可得:+=2,又+-=0,则2=,解得=0(舍去)或=2.则,,所以m=10.14、【解析】
直接应用数量积的运算,求出与的夹角.【详解】设向量、的夹角为;∵,∴,∵,∴.故答案为:.【点睛】本题考查向量的夹角计算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,属于基础题.15、【解析】
根据数列的通项式求出前项和,再极限的思想即可解决此题。【详解】数列的通项公式为,则,则答案.故为:.【点睛】本题主要考查了给出数列的通项式求前项和以及极限。求数列的前常用的方法有错位相减、分组求和、列项相消等。本题主要利用了分组求和的方法。16、4【解析】
故答案为:4【点睛】本题主要考查向量的位置关系,考查向量模的运算的处理方法.由于三个向量两两所成的角相等,故它们两两的夹角为,由于它们的模都是已知的,故它们两两的数量积也可以求出来,对后平方再开方,就可以计算出最后结果.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析.【解析】
(1)根据旋转体的形状,可利用两个圆锥的体积和得到所求(2)分别计算两个圆锥的侧面积求和即可.【详解】沿斜边所在直线旋转一周即得到如图所示的旋转体.∵,,∴,,,∴.(2)当,其表面积;当,其表面积.通过计算知,,∴.【点睛】本题主要考查了旋转体的形成,圆锥的体积、面积求法,属于中档题.18、(1);(2)【解析】
(1)由,可得,,,.根据、、成等差数列,、、成等比数列.可得,,代入解出即可得出.(2)由(1)可得:,可得,分别利用等差数列与等比数列的求和公式即可得出.【详解】(1),,,,.,,成等差数列,,,成等比数列.,,,,,.联立解得:,.(2)由(1)可得:,,由,解得..【点睛】本题考查等差数列与等比数列的通项公式与求和公式及其性质、分类讨论方法、不等式的解法,考查推理能力与计算能力,属于中档题.19、(1);(2);(3).【解析】
(1)根据向量的垂直,转化出方程组,求解方程组即可;(2)将向量赋予坐标,求得向量对应点的轨迹方程,将问题转化为圆外一点,到圆上一点的距离的最值问题,即可求解;(3)根据余弦定理,解得,以及的临界状态时,对应的圆心角的大小,利用几何概型的概率计算公式,即可求解.【详解】(1)因为故可得,解得①②由①-②可得,解得,将其代入①可得,即将其代入②可得解得,又向量夹角的范围为,故向量与的夹角为.(2)不妨设,由可得.不妨设的起始点为坐标原点,终点为C.因此,点C落在以)为圆心,1为半径的圆上(如图).因为,即由圆的特点可知的最小值为,即:.(3)当时,因为,,满足勾股定理,故容易得.当时,假设此时点落在如图所示的F点处.如图所示.因为,由余弦定理容易得,故.所以,本题化为,在半圆上任取一点C,点C落在弧CF上的概率.由几何概型的概率计算可知:的概率即为圆心角的弧度除以,即.【点睛】本题考查向量垂直时数量积的表示,以及利用解析的手段解决向量问题的能力,还有几何概型的概率计算,涉及圆方程的求解,以及余弦定理.本题属于综合题,值得总结.20、(1)(2)【解析】
(1)根据,得到,再由题中数据,即可求出结果;(2)根据向量数量积的运算法则,以及(1)的结果,即可得出结果.【详解】解:(1)因为,所以,即.因为,且向量与的夹角为,所以,即.(2)由(1)可得.【点睛】本题主要考查平面向量的数量积,熟记模的计算公式,以及向量数量积的运算法则即可,属于常考题型.21、(1);(2);(3)19杯.【解析】试题分析:(1)由“选取的组数据恰好是相邻天的数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 腾讯公司高级助理面试要点及答案
- 供应链风险控制考试题含答案
- 中国联通网络技术助理招聘问题集
- 人力资源管理师考试重点难点解析与备考策略
- 2026广东广州市中山市教体系统第一期招聘事业单位人员117人笔试考试参考题库及答案解析
- 巡察调查员面试题集
- 物流专员岗位面试技巧及问题集
- 安全意识教育内容及实施效果考核
- 设计师UI-UX方向面试题及答案
- 2025福建宁德师范学院附属宁德市医院编外工作人员招聘12人(三)笔试考试参考试题及答案解析
- 人社局公益性岗位笔试题目及答案
- 2026全国人大机关直属事业单位招聘50人笔试考试备考题库及答案解析
- 2026年烟花爆竹经营单位主要负责人证考试题库及答案
- 2025秋统编语文八年级上册14.3《使至塞上》课件(核心素养)
- 2025年点石联考东北“三省一区”高三年级12月份联合考试英语试题(含答案)
- 矿山隐蔽致灾因素普查规范课件
- 2025年《数据分析》知识考试题库及答案解析
- 2025年超星尔雅学习通《数据分析与统计》考试备考题库及答案解析
- 宝安区老虎坑垃圾焚烧发电厂三期工程环境影响评价报告
- 设备安装用工合同范本
- 湖南省长沙市一中集团2025-2026学年七年级上学期11月期中联考英语试题(含解析无听力原文及音频)
评论
0/150
提交评论