2025届贵州省铜仁市伟才学校高一下数学期末复习检测试题含解析_第1页
2025届贵州省铜仁市伟才学校高一下数学期末复习检测试题含解析_第2页
2025届贵州省铜仁市伟才学校高一下数学期末复习检测试题含解析_第3页
2025届贵州省铜仁市伟才学校高一下数学期末复习检测试题含解析_第4页
2025届贵州省铜仁市伟才学校高一下数学期末复习检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届贵州省铜仁市伟才学校高一下数学期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某三棱柱的底面是边长为2的正三角形,高为6,则该三棱柱的体积为A. B. C. D.2.已知数列的前项和为,,且满足,若,则的值为()A. B. C. D.3.已知直线,与互相垂直,则的值是()A. B.或 C. D.或4.对数列,“对于任意成立”是“其前n项和数列为递增数列”的()A.充分非必要条件 B.必要非充分条件C.充分必要条件 D.非充分非必要条件5.如果,并且,那么下列不等式中不一定成立的是()A. B. C. D.6.函数的图象的相邻两支截直线所得的线段长为,则的值是()A.0 B. C.1 D.7.三边,满足,则三角形是()A.锐角三角形 B.钝角三角形 C.等边三角形 D.直角三角形8.如图是一三棱锥的三视图,则此三棱锥内切球的体积为()A. B. C. D.9.如图是某几何体的三视图,则该几何体的表面积为()A. B. C. D.10.下列命题中正确的是()A.如果两条直线都平行于同一个平面,那么这两条直线互相平行B.过一条直线有且只有一个平面与已知平面垂直C.如果一条直线平行于一个平面内的一条直线,那么这条直线平行于这个平面D.如果两条直线都垂直于同一平面,那么这两条直线共面二、填空题:本大题共6小题,每小题5分,共30分。11.终边经过点,则_____________12.,则f(f(2))的值为____________.13._________________;14.已知直线:与圆交于,两点,过,分别作的垂线与轴交于,两点,若,则__________.15.数列满足,则________.16.设是等差数列的前项和,若,则________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知定义域为的函数在上有最大值1,设.(1)求的值;(2)若不等式在上恒成立,求实数的取值范围;(3)若函数有三个不同的零点,求实数的取值范围(为自然对数的底数).18.在如图所示的几何体中,D是AC的中点,EF∥DB.(Ⅰ)已知AB=BC,AE=EC.求证:AC⊥FB;(Ⅱ)已知G,H分别是EC和FB的中点.求证:GH∥平面ABC.19.向量函数.(1)求的最小正周期及单调增区间;(2)求在区间上的最大值和最小值及取最值时的值.20.在等差数列中,,且前7项和.(1)求数列的通项公式;(2)令,求数列的前项和.21.已知向量,函数,且当,时,的最小值为.(1)求的值,并求的单调递增区间;(2)先将函数的图象上所有点的横坐标缩小到原来的倍(纵坐标不变),再将所得图象向右平移个单位,得到函数的图象,求方程在区间上所有根之和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

计算结果.【详解】因为底面是边长为2的正三角形,所以底面的面积为,则该三棱柱的体积为.【点睛】本题考查了棱柱的体积公式,属于简单题型.2、D【解析】

由递推关系可证得数列为等差数列,利用等差数列通项公式求得公差;利用等差数列通项公式和前项和公式分别求得和,代入求得结果.【详解】由得:数列为等差数列,设其公差为,,解得:,本题正确选项:【点睛】本题考查等差数列基本量的计算,涉及到利用递推关系式证明数列为等差数列、等差数列通项公式和前项和公式的应用.3、B【解析】

根据直线垂直公式得到答案.【详解】已知直线,与互相垂直或故答案选B【点睛】本题考查了直线垂直的关系,意在考查学生的计算能力.4、A【解析】

根据递增数列的性质和充分必要条件判断即可【详解】对于任意成立可以推出其前n项和数列为递增数列,但反过来不成立如当时其,此时为递增数列但所以“对于任意成立”是“其前n项和数列为递增数列”的充分非必要条件故选:A【点睛】要说明一个命题不成立,只需举出一个反例即可.5、D【解析】

不等式两边乘(或除以)同一个负数,不等号的方向改变,可判定A的真假;a>b,-1>-2,根据同向不等式可以相加,可判定B的真假;根据a-b>0则b-a<0,进行判定C的真假;a的符号不确定,从而选项D不一定成立,从而得到结论.【详解】∵a,b∈R,并且a>b,∴−a<−b,故A一定正确;a>b,−1>−2,根据同向不等式可以相加得,a−1>b−2,故B一定正确;a−b>0则b−a<0,所以a−b>b−a,故C一定正确;不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,而a的符号不确定,故D不一定正确.故选D.【点睛】本题主要考查利用不等式的性质判断不等关系,属于基础题.6、C【解析】

根据题意可知函数周期为,利用周期公式求出,计算即可求值.【详解】由正切型函数的图象及相邻两支截直线所得的线段长为知,,所以,,故选C.【点睛】本题主要考查了正切型函数的周期,求值,属于中档题.7、C【解析】

由基本不等式得出,将三个不等式相加得出,由等号成立的条件可判断出的形状.【详解】为三边,,由基本不等式可得,将上述三个不等式相加得,当且仅当时取等号,所以,是等边三角形,故选C.【点睛】本题考查三角形形状的判断,考查基本不等式的应用,利用基本不等式要注意“一正、二定、三相等”条件的应用,考查推理能力,属于中等题.8、D【解析】把此三棱锥嵌入长宽高分别为:的长方体中三棱锥即为所求的三棱锥其中,,,则,故可求得三棱锥各面面积分别为:,,,故表面积为三棱锥体积设内切球半径为,则故三棱锥内切球体积故选9、C【解析】

根据三视图还原直观图,根据长度关系计算表面积得到答案.【详解】根据三视图还原直观图,如图所示:几何体的表面积为:故答案选C【点睛】本题考查了三视图,将三视图转化为直观图是解题的关键.10、D【解析】

利用定理及特例法逐一判断即可。【详解】解:如果两条直线都平行于同一个平面,那么这两条直线相交、平行或异面,故A不正确;过一条直线有且只有一个平面与已知平面垂直,不正确.反例:如果该直线本身就垂直于已知平面的话,那么可以找到无数个平面与已知平面垂直,故B不正确;如果这两条直线都在平面内且平行,那么这直线不平行于这个平面,故C不正确;如果两条直线都垂直于同一平面,则这两条直线平行,所以这两条直线共面,故D正确.故选:D.【点睛】本题主要考查了线线平行的判定,面面垂直的判定,线面平行的判定,线面垂直的性质,考查空间思维能力,属于中档题。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据正弦值的定义,求得正弦值.【详解】依题意.故答案为:【点睛】本小题主要考查根据角的终边上一点的坐标求正弦值,属于基础题.12、1【解析】

先求f(1),再根据f(1)值所在区间求f(f(1)).【详解】由题意,f(1)=log3(11–1)=1,故f(f(1))=f(1)=1×e1–1=1,故答案为:1.【点睛】本题考查分段函数求值,考查对应性以及基本求解能力.13、1【解析】

利用诱导公式化简即可得出答案【详解】【点睛】本题考查诱导公式,属于基础题.14、4【解析】

由题,根据垂径定理求得圆心到直线的距离,可得m的值,既而求得CD的长可得答案.【详解】因为,且圆的半径为,所以圆心到直线的距离为,则由,解得,代入直线的方程,得,所以直线的倾斜角为,由平面几何知识知在梯形中,.故答案为4【点睛】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.15、【解析】

根据题意可求得和的等式相加,求得,进而推出,判断出数列是以6为周期的数列,进而根据求出答案。【详解】将以上两式相加得数列是以6为周期的数列,故【点睛】对于递推式的使用,我们可以尝试让取或,又得一个递推式,将两个递推式相加或者相减来找规律,本题是一道中等难度题目。16、5【解析】

由等差数列的前和公式,求得,再结合等差数列的性质,即可求解.【详解】由题意,根据等差数列的前和公式,可得,解得,又由等差数列的性质,可得.故答案为:.【点睛】本题主要考查了等差数列的性质,以及等差数列的前和公式的应用,其中解答中熟记等差数列的性质,以及合理应用等差数列的前和公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)0;(2);(3)【解析】

(1)结合二次函数的性质可判断g(x)在[1,2]上的单调性,结合已知函数的最大值可求m;(2)由(1)可知f(x),由原不等式可知2k1在x∈[3,9]上恒成立,结合对数与二次函数的性质可求;(3)原方程可化为|ex﹣1|2﹣(3k+2)|ex﹣1|+(2k+1)=0,利用换元q=|ex﹣1|,结合二次函数的实根分布即可求解.【详解】(1)因为在上是增函数,所以,解得.(2)由(1)可得:所以不等式在上恒成立.等价于在上恒成立令,因为,所以则有在恒成立令,,则所以,即,所以实数的取值范围为.(3)因为令,由题意可知令,则函数有三个不同的零点等价于在有两个零点,当,此时方程,此时关于方程有三个零点,符合题意;当记为,,且,,所以,解得综上实数的取值范围.【点睛】本题主要考查了二次函数的单调性的应用,不等式中的恒成立问题与最值的相互转化,二次函数的实根分布问题等知识的综合应用,是中档题18、(Ⅰ)证明:见解析;(Ⅱ)见解析.【解析】试题分析:(Ⅰ)根据,知与确定一个平面,连接,得到,,从而平面,证得.(Ⅱ)设的中点为,连,在,中,由三角形中位线定理可得线线平行,证得平面平面,进一步得到平面.试题解析:(Ⅰ)证明:因,所以与确定平面.连接,因为为的中点,所以,同理可得.又,所以平面,因为平面,所以.(Ⅱ)设的中点为,连.在中,因为是的中点,所以,又,所以.在中,因为是的中点,所以,又,所以平面平面,因为平面,所以平面.【考点】平行关系,垂直关系【名师点睛】本题主要考查直线与直线垂直、直线与平面平行.此类题目是立体几何中的基本问题.解答本题,关键在于能利用已知的直线与直线、直线与平面、平面与平面的位置关系,通过严密推理,给出规范的证明.本题能较好地考查考生的空间想象能力、逻辑推理能力及转化与化归思想等.19、(1),(2),最大值为;,最小值为0【解析】

(1)用已知的向量表示出,再进行化简整理,可得;(2)由正弦函数的值域可得。【详解】(1)由题得,,化简整理得,因此的最小正周期为,由得,则单调增区间为.(2)若,则,当,即时,取最大值,当,即时,取最小值0.综上,当时,取最大值,当时,取最小值0.【点睛】本题考查向量的运算和函数的周期,单调区间以及最值,知识点考查全面,难度不大。20、(1);(2)Sn=•3n+1+【解析】

(1)等差数列{an}的公差设为d,运用等差数列的通项公式和求和公式,计算可得所求通项公式;(2)求得bn=2n•3n,由数列的错位相减法求和即可.【详解】(1)等差数列{an}的公差设为d,a3=6,且前7项和T7=1.可得a1+2d=6,7a1+21d=1,解得a1=2,d=2,则an=2n;(2)bn=an•3n=2n•3n,前n项和Sn=2(1•3+2•32+3•33+…+n•3n),3Sn=2(1•32+2•33+3•34+…+n•3n+1),相减可得﹣2Sn=2(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论