版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西贺州中学2025届高一数学第二学期期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图是一个正方体的表面展开图,若图中“努”在正方体的后面,那么这个正方体的前面是()A.定 B.有 C.收 D.获2.某几何体三视图如图所示,则该几何体的体积为()A. B. C. D.3.函数图像的一个对称中心是()A. B. C. D.4.在数列中,若,,,设数列满足,则的前项和为()A. B. C. D.5.已知、都是单位向量,则下列结论正确的是()A. B. C. D.6.将函数的图像左移个单位,则所得到的图象的解析式为A. B.C. D.7.下列函数中,既是偶函数又在上是单调递减的是A. B. C. D.8.给出下面四个命题:①;②;③;④.其中正确的个数为()A.1个 B.2个 C.3个 D.4个9.如图,测量河对岸的塔高AB时可以选与塔底B在同一水平面内的两个测点C与D,测得,,CD=30,并在点C测得塔顶A的仰角为60°,则塔高AB等于A. B. C. D.10.下列四组中的函数,表示同一个函数的是()A., B.,C., D.,二、填空题:本大题共6小题,每小题5分,共30分。11.一个圆锥的侧面积为,底面积为,则该圆锥的体积为________.12.如图是一个算法流程图.若输出的值为4,则输入的值为______________.13.等比数列中前n项和为,且,,,则项数n为____________.14.已知数列满足:,,则数列的前项的和_______.15.在某校举行的歌手大赛中,7位评委为某同学打出的分数如茎叶图所示,去掉一个最高分和一个最低分后,所剩数据的方差为______.16.已知函数的图象如图所示,则不等式的解集为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在三棱柱中,是边长为4的正三角形,侧面是矩形,分别是线段的中点.(1)求证:平面;(2)若平面平面,,求三棱锥的体积.18.如图,在中,,点在边上,(1)求的度数;(2)求的长度.19.“中国人均读书本(包括网络文学和教科书),比韩国的本、法国的本、日本的本、犹太人的本少得多,是世界上人均读书最少的国家”,这个论断被各种媒体反复引用.出现这样统计结果无疑是令人尴尬的,而且和其他国家相比,我国国民的阅读量如此之低,也和我国是传统的文明古国、礼仪之邦的地位不相符.某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需看不同类型的书籍,为了合理配备资源,现对小区内看书人员进行年龄调查,随机抽取了一天名读书者进行调查,将他们的年龄分成段:,,,,,后得到如图所示的频率分布直方图.问:(1)估计在这名读书者中年龄分布在的人数;(2)求这名读书者年龄的平均数和中位数;(3)若从年龄在的读书者中任取名,求这两名读书者年龄在的人数恰为的概率.20.已知的三个内角的对边分别是,且.(1)求角的大小;(2)若的面积为,求的周长.21.已知向量,.(1)若,求的值.(2)记,在中,满足,求函数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
利用正方体及其表面展开图的特点以及题意解题,把“努”在正方体的后面,然后把平面展开图折成正方体,然后看“努”相对面.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“努”与面“有”相对,所以图中“努”在正方体的后面,则这个正方体的前面是“有”.故选:.【点睛】本题考查了正方形相对两个面上的文字问题,同时考查空间想象能力.注意正方体的空间图形,从相对面入手,分析及解答问题,属于基础题.2、B【解析】试题分析:该几何体是正方体在两个角各挖去四分之一个圆柱,因此.故选B.考点:三视图,体积.3、B【解析】
由题得,解出x的值即得函数图像的一个对称中心.【详解】由题得,所以,所以图像的对称中心是.当k=1时,函数的对称中心为.故选B【点睛】本题主要考查三角函数图像的对称中心的求法,意在考查学生对该知识的理解掌握水平,属于基础题.4、D【解析】
利用等差中项法得知数列为等差数列,根据已知条件可求出等差数列的首项与公差,由此可得出数列的通项公式,利用对数与指数的互化可得出数列的通项公式,并得知数列为等比数列,利用等比数列前项和公式可求出.【详解】由可得,可知是首项为,公差为的等差数列,所以,即.由,可得,所以,数列是以为首项,以为公比的等比数列,因此,数列的前项和为,故选D.【点睛】本题考查利用等差中项法判断等差数列,同时也考查了对数与指数的互化以及等比数列的求和公式,解题的关键在于结合已知条件确定数列的类型,并求出数列的通项公式,考查运算求解能力,属于中等题.5、B【解析】
由、都是单位向量,由向量的数量积和共线的定义可判断出正确选项.【详解】由、都是单位向量,所以.设、的夹角为.则,所以A,D不正确.当时,、同向或反向,所以C不正确.,所以B正确.故选:B【点睛】本题考查了单位向量的概念,属于概念考查题,应该掌握.6、C【解析】
由三角函数的图象变换,将函数的图像左移个单位,得到,即可得到函数的解析式.【详解】由题意,将函数的图像左移个单位,可得的图象,所以得到的函数的解析式为,故选C.【点睛】本题主要考查了三角函数的图象变换,其中熟记三角函数的图象变换的规则是解答本题的关键,着重考查了分析问题和解答问题的能力,属于基础题.7、B【解析】
可先确定奇偶性,再确定单调性.【详解】由题意A、B、C三个函数都是偶函数,D不是偶函数也不是奇函数,排除D,A中在上不单调,C中在是递增,只有B中函数在上递减.故选B.【点睛】本题考查函数的奇偶性与单调性,解题时可分别确定函数的这两个性质.8、B【解析】①;②;③;④,所以正确的为①②,选B.9、D【解析】在中,由正弦定理得,解得在中,10、A【解析】
分别判断两个函数的定义域和对应法则是否相同即可.【详解】.的定义域为,,两个函数的定义域相同,对应法则相同,所以,表示同一个函数..的定义域为,,两个函数的定义域相同,对应法则不相同,所以,不能表示同一个函数..的定义域为,的定义域为,两个函数的定义域不相同,所以,不能表示同一个函数..的定义域为,的定义域,两个函数的定义域不相同,对应法则相同,所以,不能表示同一个函数.故选.【点睛】本题主要考查判断两个函数是否为同一函数,判断的依据主要是判断两个函数的定义域和对应法则是否相同即可.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
设圆锥的底面半径为,母线长为,由圆锥的侧面积、圆面积公式列出方程组求解,代入圆锥的体积公式求解.【详解】设圆锥的底面半径为,母线长为,其侧面积为,底面积为,则,解得,,∴高===,∴==.故答案为:.【点睛】本题考查圆锥的体积的求法,考查圆锥的侧面积、底面积、体积公式等基础知识,考查运算求解能力,属于基础题.12、-1【解析】
对的范围分类,利用流程图列方程即可得解.【详解】当时,由流程图得:令,解得:,满足题意.当时,由流程图得:令,解得:,不满足题意.故输入的值为:【点睛】本题主要考查了流程图知识,考查分类思想及方程思想,属于基础题.13、6【解析】
利用等比数列求和公式求得,再利用通项公式求解n即可【详解】,代入,,得,又,得.故答案为:6【点睛】本题考查等比数列的通项公式及求和公式的基本量计算,熟记公式准确计算是关键,是基础题14、【解析】
通过令求出数列的前几项,猜测是以为周期的周期数列,且每个周期内都是以为首项,2为公比的等比数列.然后根据递推式给予证明,最后由等比数列的前项和公式计算.【详解】当时,,,,,,,当时,,,,,,,当时,,,,,,,猜测,是以为周期的周期数列,且每个周期内都是以为首项,2为公比的等比数列.设中,即,∴,由于都是正整数,所以,所以数列中第项开始大于3,前项是以为首项,2为公比的等比数列.,所以是以为周期的周期数列,所以.故答案为:.【点睛】本题考查等比数列的前项和,考查数列的周期性.解题关键是确定数列的周期性.方法采取的是从特殊到一般,猜想与证明.15、2【解析】
去掉分数后剩余数据为22,23,24,25,26,先计算平均值,再计算方差.【详解】去掉分数后剩余数据为22,23,24,25,26平均值为:方差为:故答案为2【点睛】本题考查了方差的计算,意在考查学生的计算能力.16、【解析】
根据函数图象以及不等式的等价关系即可.【详解】解:不等式等价为或,
则,或,
故不等式的解集是.
故答案为:.【点睛】本题主要考查不等式的求解,根据不等式的等价性结合图象之间的关系是解决本题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】
(1)取中点为,连接,由中位线定理证得,即证得平行四边形,于是有,这样就证得线面平行;(2)由等体积法变换后可计算.【详解】证明:(1)取中点为,连接,是平行四边形,平面,平面,∴平面解:(2)是线段中点,则【点睛】本题考查线面平行的判定,考查棱锥的体积.线面平行的证明关键是找到线线平行,而棱锥的体积常常用等积变换,转化顶点与底.18、(1)(2)【解析】
(1)中直接由余弦定理可得,然后得到的度数;(2)由(1)知,在中,由正弦定理可直接得到的值.【详解】解:(1)在中,,,由余弦定理,有,在中,;(2)由(1)知,在中,由正弦定理,有,.【点睛】本题主要考查正弦定理和余弦定理的应用,考查了计算能力,属于基础题.19、(1);(2);(3).【解析】
(1)识别频率直方图,注意其纵轴的意义;(2)在频率直方图中平均数是每组数据的组中值乘以频率,中位数是排在最中间的数;(3)求出古典概型中的基本事情总数和具体事件数,利用比值求解.【详解】(1)由频率分布直方图知,年龄在的频率为所以,名读书者年龄分布在的人数为人.(2)名读书者年龄的平均数为:设中位数为,解之得,即名读书者年龄的中位数为岁.(3)年龄在的读书者有人,记为,;年龄在的读数者有人,记为,,,从上述人中选出人,共有如下基本事件:,共有基本事件数为个,记选取的两名读者中恰好有一人年龄在中为事件,则事件包含的基本事件数为个:故.【点睛】本题考查识别频率直方图和样本的数字特征,属于基础题.20、(1);(2)【解析】
(1)通过正弦定理得,进而求出,再根据,进而求得的大小;(2)由正弦定理中的三角形面积公式求出,再根据余弦定理,求得,进而求得的周长.【详解】(1)由题意知,由正弦定理得,又由,则,所以,又因为,则,所以.(2)由三角形的面积公式,可得,解得,又因为,解得,即,所以,所以的周长为【点睛】本题主要考查了正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年烟台幼儿师范高等专科学校马克思主义基本原理概论期末考试题带答案解析(夺冠)
- 2025年哈尔滨理工大学马克思主义基本原理概论期末考试模拟题附答案解析
- 2025年江苏城乡建设职业学院单招职业适应性考试题库带答案解析
- 2025年泗水县幼儿园教师招教考试备考题库附答案解析
- 2024年襄垣县招教考试备考题库及答案解析(必刷)
- 2025年河套学院马克思主义基本原理概论期末考试模拟题及答案解析(必刷)
- 2025年清涧县招教考试备考题库带答案解析
- 市安全生产承诺制度
- 2025年乌鲁木齐职业技术学院马克思主义基本原理概论期末考试模拟题及答案解析(夺冠)
- 2025年漳州科技学院单招综合素质考试题库附答案解析
- 2026年及未来5年市场数据中国机械式停车设备行业市场全景分析及投资战略规划报告
- 泥浆压滤施工方案(3篇)
- 李时珍存世墨迹初探──《李濒湖抄医书》的考察
- 肺源性心脏病诊疗指南(2025年版)
- 医院行风建设培训会课件
- 非药品类易制毒化学品经营企业年度自查细则
- 太阳能建筑一体化原理与应 课件 第5章 太阳能集热器
- 住院患者节前安全宣教
- 2026春人教版英语八下单词表(先鸟版)
- 汽车装潢贴膜合同范本
- 新人教版(2025春季版)七年级下册英语单词表(可编辑一表解决所有需求)
评论
0/150
提交评论