河北省郑口中学2025届数学高一下期末复习检测模拟试题含解析_第1页
河北省郑口中学2025届数学高一下期末复习检测模拟试题含解析_第2页
河北省郑口中学2025届数学高一下期末复习检测模拟试题含解析_第3页
河北省郑口中学2025届数学高一下期末复习检测模拟试题含解析_第4页
河北省郑口中学2025届数学高一下期末复习检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省郑口中学2025届数学高一下期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.等比数列的前项和为,,且成等差数列,则等于()A. B. C. D.2.在中,已知是边上一点,,,则等于()A. B. C. D.3.已知,,,,则下列等式一定成立的是()A. B. C. D.4.已知等差数列中,,,则的值为()A.51 B.34 C.64 D.5125.已知,,,是球球面上的四个点,平面,,,则该球的表面积为()A. B. C. D.6.已知锐角△ABC的面积为,BC=4,CA=3,则角C的大小为()A.75° B.60° C.45° D.30°7.已知等差数列的前项和为,,当时,的值为()A.21 B.22 C.23 D.248.如图所示,等边的边长为2、为的中点,且也是等边三角形,若以点为中心按逆时针方向旋转后到达的位置,则在转动过程中的取值范围是()A. B. C. D.9.若数列满足(,为常数),则称数列为“调和数列”.已知数列为调和数列,且,则的最大值是()A.50 B.100 C.150 D.20010.已知点,,则与向量的方向相反的单位向量是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量、的夹角为,且,,则__________.12.已知,,则______.13.如图,缉私艇在处发现走私船在方位角且距离为12海里的处正以每小时10海里的速度沿方位角的方向逃窜,缉私艇立即以每小时14海里的速度追击,则缉私艇追上走私船所需要的时间是__________小时.14.若直线与圆相切,则________.15.若存在实数,使不等式成立,则的取值范围是_______________.16.已知函数,(常数、),若当且仅当时,函数取得最大值1,则实数的数值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.关于的不等式的解集为.(1)求实数的值;(2)若,求的值.18.化简求值:(1)化简:(2)求值,已知,求的值19.如图,在四棱锥中,底面是菱形,底面.(Ⅰ)证明:;(Ⅱ)若,求二面角的余弦值.20.已知的三个内角,,的对边分别为,,,且满足.(1)求角的大小;(2)若,,,求的长21.已知函数,.(1)求函数的最小正周期;(2)求函数的最小值和取得最小值时的取值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

根据等差中项的性质列方程,并转化为的形式,由此求得的值,进而求得的值.【详解】由于成等差数列,故,即,所以,,所以,故选A.【点睛】本小题主要考查等差中项的性质,考查等比数列基本量的计算,属于基础题.2、A【解析】

利用向量的减法将3,进行分解,然后根据条件,进行对比即可得到结论【详解】∵3,∴33,即43,则,∵λ,∴λ,故选A.【点睛】本题主要考查向量的基本定理的应用,根据向量的减法法则进行分解是解决本题的关键.3、B【解析】试题分析:相除得,又,所以.选B.【考点定位】指数运算与对数运算.4、A【解析】

根据等差数列性质;若,则即可。【详解】因为为等差数列,所以,,所以选择A【点睛】本题主要考查了等差数列比较重要的一个性质;在等差数列中若,则,属于基础题。5、B【解析】

根据截面法,作出球心O与外接圆圆心所在截面,利用平行四边形和勾股定理可求得球半径,从而得到结果.【详解】如图,的外接圆圆心E为BC的中点,设球心为O,连接OE,OP,OA,D为PA的中点,连接OD.根据直角三角形的性质可得,且平面,则//,由为等腰三角形可得,又,所以//,则四边形ODAE是矩形,所以=,而,中,根据勾股定理可得,所以该球的表面积为.所以本题答案为B.【点睛】本题考查求三棱锥外接球的表面积问题,几何体的外接球、内切球问题,关键是球心位置的确定,必要时需把球的半径放置在可解的几何图形中,如果球心的位置不易确定,则可以把该几何体补成规则的几何体,便于球心位置和球的半径的确定.6、B【解析】试题分析:由三角形的面积公式,得,即,解得,又因为三角形为锐角三角形,所以.考点:三角形的面积公式.7、B【解析】

由,得,按或分两种情况,讨论当时,求的值.【详解】已知等差数列的前项和为,由,得,当时,有,得,,∴时,此时.当时,有,得,,∴时,此时.故选:B【点睛】本题考查等差数列的求和公式及其性质的应用,也考查分类讨论的思想,属于基础题.8、D【解析】

设,,则,则,将其展开,运用向量的数量积的定义,化简得到,再由余弦函数的性质,即可得到范围.【详解】设,,则,则,由于,则,则.故选:D【点睛】本题考查平面向量的数量积的定义,考查三角函数的化简和求最值,考查运算能力,属于中档题.9、B【解析】

根据调和数列定义知为等差数列,再由前20项的和为200知,最后根据基本不等式可求出的最大值。【详解】因为数列为调和数列,所以,即为等差数列又,又大于0所以【点睛】本题考查了新定义“调和数列”的性质、等差数列的性质及其前n项公式、基本不等式的性质,属于难题。10、A【解析】

根据单位向量的定义即可求解.【详解】,向量的方向相反的单位向量为,故选A.【点睛】本题主要考查了向量的坐标运算,向量的单位向量的概念,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据向量的数量积的应用进行转化即可.【详解】,与的夹角为,∴•||||cos4,则,故答案为.【点睛】本题主要考查向量长度的计算,根据向量数量积的应用是解决本题的关键.12、【解析】

由,然后利用两角差的正切公式可计算出的值.【详解】.故答案为:.【点睛】本题考查利用两角差的正切公式求值,解题的关键就是弄清所求角与已知角之间的关系,考查计算能力,属于基础题.13、【解析】

设缉私艇追上走私船所需要的时间为小时,根据各自的速度表示出与,由,利用余弦定理列出关于的方程,求出方程的解即可得到的值.【详解】解:设缉私艇上走私船所需要的时间为小时,则,,在中,,根据余弦定理知:,或(舍去),故缉私艇追上走私船所需要的时间为2小时.故答案为:.【点睛】本题考查了正弦、余弦定理,以及特殊角的三角函数值,熟练掌握正弦、余弦定理是解本题的关键,属于中档题.14、1【解析】

利用圆心到直线的距离等于半径列方程,解方程求得的值.【详解】由于直线和圆相切,所以圆心到直线的距离,即,由于,所以.故答案为:【点睛】本小题主要考查直线和圆的位置关系,考查点到直线的距离公式,属于基础题.15、;【解析】

不等式转化为,由于存在,使不等式成立,因此只要求得的最小值即可.【详解】由题意存在,使得不等式成立,当时,,其最小值为,∴.故答案为.【点睛】本题考查不等式能成立问题,解题关键是把问题转化为求函数的最值.不等式能成立与不等式恒成立问题的转化区别:在定义域上,不等式恒成立,则,不等式能成立,则,不等式恒成立,则,不等式能成立,则.转化时要注意是求最大值还是求最小值.16、-1【解析】

先将函数转化成同名三角函数,再结合二次函数性质进行求解即可【详解】令,,对称轴为;当时,时函数值最大,,解得;当时,对称轴为,函数在时取到最大值,与题设矛盾;当时,时函数值最大,,解得;故的数值为:-1故答案为:-1【点睛】本题考查换元法在三角函数中的应用,分类讨论求解函数最值,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)由行列式的运算法则,得原不等式即,而不等式的解集为,采用比较系数法,即可得到实数的值;(2)把代入,求得,进一步得到,再由两角差的正切公式即可求解.【详解】(1)原不等式等价于,由题意得不等式的解集为,故是方程的两个根,代入解得,所以实数的值为.(2)由,得,即.,【点睛】本题考查了行列式的运算法则、由一元二次不等式的解集求参数值、二倍角的正切公式以及两角差的正切公式,需熟记公式,属于基础题.18、(1);(2)【解析】

(1)根据诱导公式先化简每一项,然后即可得到最简结果;(2)利用“齐次”式的特点,分子分母同除以,将其化简为关于的形式即可求值.【详解】(1)原式,(2)原式【点睛】本题考查诱导公式和同角三角函数的基本关系的运用,难度较易.(1)利用诱导公式进行化简时,掌握“奇变偶不变”的实际含义进行化简即可;(2)求解形如的“齐次式”的值,注意采用分子分母同除以的方法,将其化简为关于的形式再求值.19、(Ⅰ)见解析(Ⅱ)【解析】

(Ⅰ)由底面推出,由菱形的性质推出,即可推出平面从而得到;(Ⅱ)作,交的延长线于,连接,则二面角的平面角是,由已知条件求出AD,进而求出AE、PD,即可求得.【详解】(Ⅰ)证明:连接,∵底面,底面,∴.∵四边形是菱形,∴.又∵,平面,平面,∴平面,∴.(Ⅱ)作,交的延长线于,连接.由于,于是平面,平面,,所以二面角的平面角是.设“”,且底面是菱形,,,,∴.【点睛】本题考查线面垂直、线线垂直的证明,二面角的余弦值,属于中档题.20、(1);(2).【解析】

(1)利用正弦定理化简已知可得:,结合两角和的正弦公式及诱导公式可得:,问题得解.(2)利用可得:,两边平方并结合已知及平面向量数量积的定义即可得解.【详解】解:(1)因为,所以由正弦定理可得,即,因为,所以,,,故.(2)由已知得,所以,所以.【点睛】本题主要考查了正弦定理的应用及两角和的正弦

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论