版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省桑海中学等三校2025届数学高一下期末预测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若函数()的最大值与最小正周期相同,则下列说法正确的是()A.在上是增函数 B.图象关于直线对称C.图象关于点对称 D.当时,函数的值域为2.在直三棱柱(侧棱垂直于底面)中,若,,,则其外接球的表面积为()A. B. C. D.3.数列,通项公式为,若此数列为递增数列,则的取值范围是A. B. C. D.4.已知平面向量,,若与同向,则实数的值是()A. B. C. D.5.下列函数中,既是偶函数又在(0,+∞)上是单调递减的是()A.y=-cosx B.y=lgx6.在中,若,且,则的形状为()A.直角三角形 B.等腰直角三角形C.正三角形或直角三角形 D.正三角形7.七巧板是我国古代劳动人民发明的一种智力玩具,由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成.如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自黑色部分的概率为()A. B. C. D.8.在区间上随机地取一个数,则事件“”发生的概率为()A. B. C. D.9.各项不为零的等差数列中,,数列是等比数列,且,则()A.4 B.8 C.16 D.6410.过点P(-2,4)作圆O:(x-2)2+(y-1)2=25的切线l,直线m:ax-3y=0与直线l平行,则直线l与m间的距离为()A.4 B.2 C.85 D.12二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最小正周期是________.12.在等比数列中,,公比,若,则的值为.13.设数列满足,且,则数列的前n项和_______________.14.若,则实数的值为_______.15.若满足约束条件则的最大值为__________.16.如图,长方体中,,,,与相交于点,则点的坐标为______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在如图所示的直角梯形中,,求该梯形绕上底边所在直线旋转一周所形成几何体的表面积和体积.18.如图是函数的部分图象.(1)求函数的表达式;(2)若函数满足方程,求在内的所有实数根之和;(3)把函数的图象的周期扩大为原来的两倍,然后向右平移个单位,再把纵坐标伸长为原来的两倍,最后向上平移一个单位得到函数的图象.若对任意的,方程在区间上至多有一个解,求正数的取值范围.19.设等差数列满足.(1)求数列的通项公式;(2)若成等比数列,求数列的前项和.20.已知圆.(1)过原点的直线被圆所截得的弦长为2,求直线的方程;(2)过外的一点向圆引切线,为切点,为坐标原点,若,求使最短时的点坐标.21.已知,,.(1)求关于的表达式,并求的最小正周期;(2)若当时,的最小值为,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
先由函数的周期可得,再结合三角函数的性质及三角函数值域的求法逐一判断即可得解.【详解】解:由函数()的最大值与最小正周期相同,所以,即,即,对于选项A,令,解得:,即函数的增区间为,当时,函数在为增函数,即A正确,对于选项B,令,解得,即函数的对称轴方程为:,又无解,则B错误,对于选项C,令,解得,即函数的对称中心为:,又无解,则C错误,对于选项D,,则,即函数的值域为,即D错误,综上可得说法正确的是选项A,故选:A.【点睛】本题考查了三角函数的性质,重点考查了三角函数值域的求法,属中档题.2、A【解析】
根据题意,将直三棱柱扩充为长方体,其体对角线为其外接球的直径,可得半径,即可求出外接球的表面积.【详解】∵,,∠ABC=90∘,∴将直三棱柱扩充为长、宽、高为2、2、3的长方体,其体对角线为其外接球的直径,长度为,∴其外接球的半径为,表面积为=17π.故选:A.【点睛】本题考查几何体外接球,通常将几何体进行割补成长方体,几何体外接球等同于长方体外接球,利用长方体外接球直径等于体对角线长求出半径,再求出球的体积和表面积即可,属于简单题.3、B【解析】因为的对称轴为,因为此数列为递增数列,所以.4、D【解析】
通过同向向量的性质即可得到答案.【详解】与同向,,解得或(舍去),故选D.【点睛】本题主要考查平行向量的坐标运算,但注意同向,难度较小.5、C【解析】
先判断各函数奇偶性,再找单调性符合题意的即可。【详解】首先可以判断选项D,y=e然后,由图像可知,y=-cosx在(0,+∞)上不单调,y=lg只有选项C:y=1-x【点睛】本题主要考查函数的性质,奇偶性和单调性。6、D【解析】
由两角和的正切公式求得,从而得,由二倍角公式求得,再求得,注意检验符合题意,可判断三角形形状.【详解】,∴,∴,由,即.∴或.当时,,无意义.当时,,此时为正三角形.故选:D.【点睛】本题考查三角形形状的判断,考查两角和的正切公式和二倍角公式,根据三角公式求出角是解题的基本方法.7、B【解析】
设正方形的边长为,计算出阴影部分区域的面积和正方形区域的面积,然后利用几何概型的概率公式计算出所求事件的概率.【详解】设正方形的边长为,则阴影部分由三个小等腰直角三角形构成,则正方形的对角线长为,则等腰直角三角形的边长为,对应每个小等腰三角形的面积,则阴影部分的面积之和为,正方形的面积为,若在此正方形中任取一点,则此点取自黑色部分的概率为,故选:B.【点睛】本题考查面积型几何概型概率公式计算事件的概率,解题的关键在于计算出所求事件对应区域的面积和总区域的面积,考查计算能力,属于中等题.8、A【解析】由得,,所以,由几何概型概率的计算公式得,,故选.考点:1.几何概型;2.对数函数的性质.9、D【解析】
根据等差数列性质可求得,再利用等比数列性质求得结果.【详解】由等差数列性质可得:又各项不为零,即由等比数列性质可得:本题正确选项:【点睛】本题考查等差数列、等比数列性质的应用,属于基础题.10、A【解析】设l:ax-3y+m=0∴-2a-12+m=0∴ax-3y+2a+12=0因此|2a-3+2a+12|a2+32=5∴a=4,因此直线二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据周期公式即可求解.【详解】函数的最小正周期故答案为:【点睛】本题主要考查了正弦型函数的周期,属于基础题.12、1【解析】
因为,,故答案为1.考点:等比数列的通项公式.13、【解析】令14、【解析】
由得,代入方程即可求解.【详解】,.,,,即,故填.【点睛】本题主要考查了反三角函数的定义及运算性质,属于中档题.15、【解析】
作出可行域,根据目标函数的几何意义可知当时,.【详解】不等式组表示的可行域是以为顶点的三角形区域,如下图所示,目标函数的最大值必在顶点处取得,易知当时,.【点睛】线性规划问题是高考中常考考点,主要以选择及填空的形式出现,基本题型为给出约束条件求目标函数的最值,主要结合方式有:截距型、斜率型、距离型等.16、【解析】
易知是的中点,求出的坐标,根据中点坐标公式求解.【详解】可知,,由中点坐标公式得的坐标公式,即【点睛】本题考查空间直角坐标系和中点坐标公式,空间直角坐标的读取是易错点.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、表面积为,体积为.【解析】
直角梯形绕它的上底(较短的底)所在直线旋转一周形成的几何体是圆柱里面挖去一个圆锥,由此可计算表面积和体积.【详解】如图直角梯形绕上底边所在直线旋转一周所形成几何体是以为母线的圆柱挖去以为母线的圆锥.由题意,∴,.【点睛】本题考查旋转体的表面积和体积,解题关键是确定该旋转体是由哪些基本几何体组合成的.18、(1)(2)答案不唯一,具体见解析(3)【解析】
(1)根据图像先确定A,再确定,代入一个特殊点再确定.(2)根据(1)的结果结合图像即可解决.(3)根据(1)的结果以及三角函数的变换求出即可解决.【详解】解:(Ⅰ)由图可知:,即,又由图可知:是五点作图法中的第三点,,即.(Ⅱ)因为的周期为,在内恰有个周期.⑴当时,方程在内有个实根,设为,结合图像知,故所有实数根之和为;⑵当时,方程在内有个实根为,故所有实数根之和为;⑶当时,方程在内有个实根,设为,结合图像知,故所有实数根之和为;综上:当时,方程所有实数根之和为;当时,方程所有实数根之和为;(Ⅲ),函数的图象如图所示:则当图象伸长为原来的倍以上时符合题意,所以.【点睛】本题主要考查了正弦函数的变换,根据图像确定函数,方程与函数.在解决方程问题时往往转化成两个函数图像交点的问题解决.本题属于中等题.19、(1)或;(2).【解析】
(1)利用等差数列性质先求出的值,进而得到公差,最后写出数列的通项公式;(2)依照题意找出(1)中符合条件的数列,再用等差数列前项和公式求出数列的前项和.【详解】(1)因为等差数列,且,所以所以,又,所以,于是或设等差数列的公差为,则或,的通项公式为:或;(2)因为成等比数列,所以所以数列的前项和.【点睛】本题主要考查等差数列的性质、通项公式的求法以及等差数列前项和公式,注意分类讨论思想的应用.20、(1)或;(2)【解析】
(1)利用垂径定理求出圆心到直线的距离,再分过原点的直线的斜率不存在与存在两种情况,分别根据点到线的距离公式求解即可.(2)设,再根据圆的切线长公式以及求出关于关于的关系,再代入的表达式求取得最小值时的即可.【详解】(1)圆圆心为,半径为.当直线的斜率不存在时,圆心到直线的距离,故不存在.当直线的斜率存在时,设的方程:,即.则圆心到的距离,由垂径定理得,即,即,解得.故的方程为或(2)如图,设,因为,故,则,即,化简得,即.此时,故当,即时最短.此时【点睛】本题主要
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 相关保密档案管理制度
- 宿州市行政服务制度规范
- 如何规范取土行为管理制度
- 律师事务所规范挂牌制度
- 如何规范公务员管理制度
- 油烟机使用管理制度规范
- 机关档案登记备份制度
- 村扶贫资料档案管理制度
- 均衡发展档案奖罚制度
- 火锅店后厨排班制度规范
- 2026年及未来5年市场数据中国机械式停车设备行业市场全景分析及投资战略规划报告
- 泥浆压滤施工方案(3篇)
- 李时珍存世墨迹初探──《李濒湖抄医书》的考察
- 肺源性心脏病诊疗指南(2025年版)
- 医院行风建设培训会课件
- 非药品类易制毒化学品经营企业年度自查细则
- 太阳能建筑一体化原理与应 课件 第5章 太阳能集热器
- 住院患者节前安全宣教
- 2026春人教版英语八下单词表(先鸟版)
- 汽车装潢贴膜合同范本
- 2025年食品安全检测服务协议书标准版(含检测项目+报告时效+填写指导)
评论
0/150
提交评论