版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届西藏自治区拉萨市城关区拉萨中学数学高一下期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数在区间上是增函数,且在区间上恰好取得一次最大值为2,则的取值范围是()A. B. C. D.2.“”是“直线(m+1)x+3my+2=0与直线(m-2)x+(m+1)y-1=0相互垂直”的()A.充分必要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件3.若程序框图如图所示,则该程序运行后输出k的值是()A.5 B.6 C.7 D.84.设,则比多了()项A. B. C. D.5.在各项均为正数的等比数列中,公比.若,,,数列的前n项和为,则当取最大值时,n的值为()A.8 B.9 C.8或9 D.176.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为4,体积为16,则这个球的表面积是()A. B. C. D.7.如图是一个正方体的平面展开图,在这个正方体中①②③与为异面直线④以上四个命题中,正确的序号是()A.①②③ B.②④ C.③④ D.②③④8.已知函数,则有A.的图像关于直线对称 B.的图像关于点对称C.的最小正周期为 D.在区间内单调递减9.在等比数列中,,,则()A. B.3 C. D.110.已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.方程的解集是___________12.在正数数列an中,a1=1,且点an,an-113.已知不等式x2-x-a>0的解集为x|x>3或14.若函数的图象与直线恰有两个不同交点,则的取值范围是________.15.若,方程的解为______.16.已知函数,下列结论中:函数关于对称;函数关于对称;函数在是增函数,将的图象向右平移可得到的图象.其中正确的结论序号为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在一次人才招聘会上,有、两家公司分别开出了他们的工资标准:公司允诺第一个月工资为8000元,以后每年月工资比上一年月工资增加500元;公司允诺第一年月工资也为8000元,以后每年月工资在上一年的月工资基础上递增,设某人年初被、两家公司同时录取,试问:(1)若该人分别在公司或公司连续工作年,则他在第年的月工资分别是多少;(2)该人打算连续在一家公司工作10年,仅从工资收入总量较多作为应聘的标准(不计其他因素),该人应该选择哪家公司,为什么?18.已知向量,其中,记函数,已知的最小正周期为.(1)求;(2)当时,试求函数的值域.19.已知等比数列的各项为正数,为其前项的和,,.(Ⅰ)求数列的通项公式;(Ⅱ)设数列是首项为,公差为的等差数列,求数列的通项公式及其前项的和.20.在中,角的对边分别为.已知(1)若,,求的面积;(2)若的面积为,且,求的值.21.求函数的最大值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
化简函数为正弦型函数,根据题意,利用正弦函数的图象与性质求得的取值范围.【详解】解:函数则函数在上是含原点的递增区间;又因为函数在区间上是单调递增,则,得不等式组又因为,所以解得.又因为函数在区间上恰好取得一次最大值为2,可得,所以,综上所述,可得.故选:D.【点睛】本题主要考查了正弦函数的图像和性质应用问题,也考查了三角函数的灵活应用,属于中档题.2、B【解析】试题分析:当时,直线为和直线,斜率之积等于,所以垂直;当两直线垂直时,,解得:或,根据充分条件必要条件概念知,“”是“直线(m+1)x+3my+2=0与直线(m-2)x+(m+1)y-1=0相互垂直”的充分不必要条件,故选B.考点:1、充分条件、必要条件;2、两条直线垂直的关系.3、A【解析】试题分析:第一次循环运算:;第二次:;第三次:;第四次:;第五次:,这时符合条件输出,故选A.考点:算法初步.4、C【解析】
可知中共有项,然后将中的项数减去中的项数即可得出答案.【详解】,则中共有项,所以,比多了的项数为.故选:C.【点睛】本题考查数学归纳法的应用,解题的关键就是计算出等式中的项数,考查分析问题和解决问题的能力,属于中等题.5、C【解析】∵为等比数列,公比为,且∴∴,则∴∴∴,∴数列是以4为首项,公差为的等差数列∴数列的前项和为令当时,∴当或9时,取最大值.故选C点睛:(1)在解决等差数列、等比数列的运算问题时,有两个处理思路:一是利用基本量将多元问题简化为一元问题;二是利用等差数列、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差数列、等比数列问题的快捷方便的工具;(2)求等差数列的前项和最值的两种方法:①函数法:利用等差数列前项和的函数表达式,通过配方或借助图象求二次函数最值的方法求解;②邻项变号法:当时,满足的项数使得取得最大值为;当时,满足的项数使得取得最小值为.6、C【解析】
根据正四棱柱的底面是正方形,高为4,体积为16,求得底面正方形的边长,再求出其对角线长,然后根据正四棱柱的体对角线是外接球的直径可得球的半径,再根据球的表面积公式可求得.【详解】依题意正四棱柱的体对角线是其外接球的直径,的中点是球心,如图:依题意设,则正四棱柱的体积为:,解得,所以外接球的直径,所以外接球的半径,则这个球的表面积是.故选C.【点睛】本题考查了球与正四棱柱的组合体,球的表面积公式,正四棱柱的体积公式,属中档题.7、D【解析】
作出直观图,根据正方体的结构特征进行判断.【详解】作出正方体得到直观图如图所示:由直观图可知,与为互相垂直的异面直线,故①不正确;,故②正确;与为异面直线,故③正确;由正方体性质可知平面,故,故④正确.故选:D【点睛】本题考查了正方体的结构特征,直线,平面的平行于垂直,属于基础题.8、B【解析】
把函数化简后再判断.【详解】,由正切函数的性质知,A、C、D都错误,只有B正确.【点睛】本题考查二倍角公式和正切函数的性质.三角函数的性质问题,一般要把函数化为一个角的一个三角函数形式,然后结合相应的三角函数得出结论.9、C【解析】
根据等比数列的性质求解即可.【详解】因为等比数列,故.故选:C【点睛】本题主要考查了等比数列性质求解某项的方法,属于基础题.10、B【解析】试题分析:如图,取中点,连接,因为是中点,则,或其补角就是异面直线所成的角,设正四面体棱长为1,则,,.故选B.考点:异面直线所成的角.【名师点睛】求异面直线所成的角的关键是通过平移使其变为相交直线所成角,但平移哪一条直线、平移到什么位置,则依赖于特殊的点的选取,选取特殊点时要尽可能地使它与题设的所有相减条件和解题目标紧密地联系起来.如已知直线上的某一点,特别是线段的中点,几何体的特殊线段.二、填空题:本大题共6小题,每小题5分,共30分。11、或【解析】
方程的根等价于或,分别求两个三角方程的根可得答案.【详解】方程或,所以或,所以或.故答案为:或.【点睛】本题考查三角方程的求解,求解时可利用单位圆中的三角函数线,注意终边相同角的表示,考查运算求解能力和数形结合思想的运用.12、2【解析】
在正数数列an中,由点an,an-1在直线x-2y=0上,知a【详解】由题意,在正数数列an中,a1=1,且a可得an-2即an因为a1=1,所以数列所以Sn故答案为2n【点睛】本题主要考查了等比数列的定义,以及等比数列的前n项和公式的应用,同时涉及到数列与解析几何的综合运用,是一道好题.解题时要认真审题,仔细解答,注意等比数列的前n项和公式和通项公式的灵活运用,着重考查了推理与运算能力,属于中档试题.13、6【解析】
由题意可知-2,3为方程x2【详解】由题意可知-2,3为方程x2-x-a=0的两根,则-2×3=-a,即故答案为:6【点睛】本题主要考查一元二次不等式的解,意在考查学生对该知识的理解掌握水平,属于基础题.14、【解析】
作出函数的图像,根据图像可得答案.【详解】因为,所以,所以,所以,作出函数的图像,由图可知故答案为:【点睛】本题考查了正弦型函数的图像,考查了数形结合思想,属于基础题.15、【解析】
运用指数方程的解法,结合指数函数的值域,可得所求解.【详解】由,即,因,解得,即.故答案:.【点睛】本题考查指数方程的解法,以及指数函数的值域,考查运算能力,属于基础题.16、【解析】
把化成的型式即可。【详解】由题意得所以对称轴为,对,当时,对称中心为,对。的增区间为,对向右平移得。错【点睛】本题考查三角函数的性质,三角函数变换,意在考查学生对三角函数的图像与性质的掌握情况。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)公司:;公司:;(2)公司十年月工资总和为,公司十年月工资总和为,选公司;【解析】
(1)易得在两家公司每年的工资分别成等差和等比数列再求解即可.(2)根据(1)中的通项公式求解前10年的工资和比较大小即可.【详解】(1)易得在公司的工资成公差为500,首项为8000的等差数列,故在公司第年的月工资为.在公司的工资成公比为,首项为8000的等比数列.故在公司第年的月工资为.(2)由(1)得,在公司十年月工资总和在公司十年月工资总和.因为.故选公司.【点睛】本题主要考查了等差等比数列的实际应用题,需要根据题意找出首项公比公差再求和等.属于基础题型.18、(1)1(2)【解析】
(1)先根据向量数列积得关系式,再根据二倍角公式以及配角公式化为基本三角函数形式,最后根据正弦函数周期性得;(2)先根据x取值范围得范围,再根据正弦函数性质确定值域.【详解】(1)(2)由(1)知,,,所以函数的值域.【点睛】本题考查二倍角公式、配角公式以及正弦函数性质,考查基本分析求解能力.19、(Ⅰ)(Ⅱ),【解析】
(Ⅰ)设正项等比数列的公比为且,由已知列式求得首项与公比,则数列的通项公式可求;(Ⅱ)由已知求得,再由数列的分组求和即可.【详解】(Ⅰ)由题意知,等比数列的公比,且,所以,解得,或(舍去),则所求数列的通项公式为.(Ⅱ)由题意得,故【点睛】本题主要考查等差数列与等比数列的通项公式及前项和公式的应用,同时考查了待定系数法求数列的通项公式和分组求和法求数列的和.20、(1);(2).【解析】
(1)先根据计算出与,再利用余弦定理求出b边,最后利用求出答案;(2)利用正弦定理将等式化为变得关系,再利用余弦定理化为与的关系式,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 食品生产落料处理制度
- 商品生产台账制度
- 定期安全生产检查制度
- 生产巡检记录管理制度
- 糕点生产质量管理制度
- 机务安全生产基本制度
- 2026北京第二外国语学院第一批非事业编制人员招聘5人参考考试试题附答案解析
- 安全生产管理人制度
- 蔬菜平行生产管理制度
- 企业生产车间门管理制度
- 2025 年度VC PE 市场数据报告 投中嘉川
- 2026中国电信四川公用信息产业有限责任公司社会成熟人才招聘备考题库及答案详解(考点梳理)
- 2025年专利管理与保护操作手册
- 2025云南山海遊旅游集团有限公司招聘10人考试备考题库及答案解析
- 2025年网约车司机收入分成合同
- 2026年海南财金银河私募基金管理有限公司招聘备考题库参考答案详解
- 2026年GRE数学部分测试及答案
- 浙江省宁波市镇海中学2026届高二上数学期末教学质量检测模拟试题含解析
- (2025年)电力交易员练习试题附答案
- 2026年咨询工程师现代咨询方法与实务模拟测试含答案
- 甘肃省酒泉市2025-2026学年高一上学期期末语文试题(解析版)
评论
0/150
提交评论