四川省成都市郫都区2025届高一下数学期末综合测试模拟试题含解析_第1页
四川省成都市郫都区2025届高一下数学期末综合测试模拟试题含解析_第2页
四川省成都市郫都区2025届高一下数学期末综合测试模拟试题含解析_第3页
四川省成都市郫都区2025届高一下数学期末综合测试模拟试题含解析_第4页
四川省成都市郫都区2025届高一下数学期末综合测试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省成都市郫都区2025届高一下数学期末综合测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,表示两条直线,,表示两个平面,则下列命题正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则2.已知圆锥的高为3,底面半径为,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积等于()A.π B.πC.16π D.32π3.设为等差数列的前项和,.若,则()A.的最大值为 B.的最小值为 C.的最大值为 D.的最小值为4.函数的图象与函数的图象的交点个数为()A.3 B.2 C.1 D.05.将函数的图象上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是()A. B.C. D.6.已知,则=()A. B. C. D.7.已知,为直线,,为平面,下列命题正确的是()A.若,,则B.若,,则与为异面直线C.若,,,则D.若,,,则8.平面直角坐标系xOy中,角的顶点在原点,始边在x轴非负半轴,终边与单位圆交于点,将其终边绕O点逆时针旋转后与单位园交于点B,则B的横坐标为()A. B. C. D.9.已知圆,由直线上一点向圆引切线,则切线长的最小值为()A.1 B.2 C. D.10.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”.则该人最后一天走的路程为().A.24里 B.12里 C.6里. D.3里二、填空题:本大题共6小题,每小题5分,共30分。11.设函数满足,当时,,则=________.12.设点是角终边上一点,若,则=____.13.已知与之间的一组数据,则与的线性回归方程必过点__________.14.已知,为第二象限角,则________15.已知数列是等差数列,记数列的前项和为,若,则________.16.已知等比数列an中,a3=2,a三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某企业用180万元购买一套新设备,该套设备预计平均每年能给企业带来100万元的收入,为了维护设备的正常运行,第一年需要各种维护费用10万元,且从第二年开始,每年比上一年所需的维护费用要增加10万元(1)求该设备给企业带来的总利润(万元)与使用年数的函数关系;(2)试计算这套设备使用多少年,可使年平均利润最大?年平均利润最大为多少万元?18.五一放假期间高速公路免费是让实惠给老百姓,但也容易造成交通堵塞.在某高速公路上的某时间段内车流量(单位:千辆/小时)与汽车的平均速度(单位:千米/小时)之间满足的函数关系(为常数),当汽车的平均速度为千米/小时时,车流量为千辆/小时.(1)在该时间段内,当汽车的平均速度为多少时车流量达到最大值?(2)为保证在该时间段内车流量至少为千辆/小时,则汽车的平均速度应控制在什么范围内?19.如果一个数列从第2项起,每一项与它前一项的差都大于2,则称这个数列为“阿当数列”.(1)若数列为“阿当数列”,且,,,求实数的取值范围;(2)是否存在首项为1的等差数列为“阿当数列”,且其前项和满足?若存在,请求出的通项公式;若不存在,请说明理由.(3)已知等比数列的每一项均为正整数,且为“阿当数列”,,,当数列不是“阿当数列”时,试判断数列是否为“阿当数列”,并说明理由.20.已知数列的前项和为,且.(1)求;(2)若,求数列的前项和.21.在中,角A,B,C的对边分别为a,b,c,,且.(1)求A;(2)求面积的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

对选项进行一一判断,选项D为面面垂直判定定理.【详解】对A,与可能异面,故A错;对B,可能在平面内;对C,与平面可能平行,故C错;对D,面面垂直判定定理,故选D.【点睛】本题考查空间中线、面位置关系,判断一个命题为假命题,只要能举出反例即可.2、B【解析】

作轴截面,圆锥的轴截面是等腰三角形,外接球的截面是圆为球的大圆是的外接圆,由图可得球的半径与圆锥的关系.【详解】如图,作轴截面,圆锥的轴截面是等腰三角形,的外接圆是球的大圆,设该圆锥的外接球的半径为R,依题意得,R2=(3-R)2+()2,解得R=2,所以所求球的体积V=πR3=π×23=π,故选B.【点睛】本题考查球的体积,关键是确定圆锥的外接球与圆锥之间的关系,即球半径与圆锥的高和底面半径之间的联系,而这个联系在其轴截面中正好体现.3、C【解析】

由已知条件推导出(n2﹣n)d<2n2d,从而得到d>0,所以a1<0,a8>0,由此求出数列{Sn}中最小值是S1.【详解】∵(n+1)Sn<nSn+1,∴Sn<nSn+1﹣nSn=nan+1即na1na1+n2d,整理得(n2﹣n)d<2n2d∵n2﹣n﹣2n2=﹣n2﹣n<0∴d>0∵1<0∴a1<0,a8>0数列的前1项为负,故数列{Sn}中最小值是S1故选C.【点睛】本题考查等差数列中前n项和最小值的求法,是中档题,解题时要认真审题,注意等差数列的性质的灵活运用.4、B【解析】由已知g(x)=(x-2)2+1,所以其顶点为(2,1),又f(2)=2ln2∈(1,2),可知点(2,1)位于函数f(x)=2lnx图象的下方,故函数f(x)=2lnx的图象与函数g(x)=x2-4x+5的图象有2个交点.5、C【解析】

将函数的图象上所有的点向右平行移动个单位长度,所得函数图象的解析式为y=sin(x-);再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是.故选C.6、C【解析】由得:,所以,故选D.7、D【解析】

利用空间中线线、线面、面面间的位置关系对选项逐一判断即可.【详解】由,为直线,,为平面,知:在A中,若,,则与相交、平行或异面,故A错误;在B中,若,,则与相交、平行或异面,故B错误;在C中,若,,,则与相交、平行或异面,故C错误;在D中,若,,,则由线面垂直、面面平行的性质定理得,故D正确.故选:D.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,属于基础题.8、B【解析】

,B的横坐标为,计算得到答案.【详解】有题意知:B的横坐标为:故答案选B【点睛】本题考查了三角函数的计算,意在考查学生的计算能力.9、A【解析】

将圆的方程化为标准方程,找出圆心坐标与半径,求出圆心到直线的距离,利用切线的性质及勾股定理求处切线长的最小值,即可得到答案.【详解】将圆化为标准方程,得,所以圆心坐标为,半径为,则圆心到直线的距离为,所以切线长的最小值为,故选A.【点睛】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到圆的标准方程,点到直线的距离公式,以及数形结合思想的应用,属于基础题.10、C【解析】

由题意可知,每天走的路程里数构成以为公比的等比数列,由求得首项,再由等比数列的通项公式求得该人最后一天走的路程.【详解】解:记每天走的路程里数为,可知是公比的等比数列,由,得,解得:,,故选C.【点睛】本题考查等比数列的通项公式,考查了等比数列的前项和,是基础的计算题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由已知得f()=f()+sin=f()+sin+sin=f()+sin+sin+sin,由此能求出结果.【详解】∵函数f(x)(x∈R)满足f(x+π)=f(x)+sinx,当0≤x<π时,f(x)=0,∴f()=f()+sin=f()+sin+sin=f()+sin+sin+sin=0+=.故答案为:.【点睛】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.12、【解析】

根据任意角三角函数的定义,列方程求出m的值.【详解】P(m,)是角终边上的一点,∴r=;又,∴=,解得m=,,.故答案为.【点睛】本题考查了任意角三角函数的定义与应用问题,属于基础题.13、【解析】

根据线性回归方程一定过样本中心点,计算这组数据的样本中心点,求出和的平均数即可求解.【详解】由题意可知,与的线性回归方程必过样本中心点,,所以线性回归方程必过.故答案为:【点睛】本题是一道线性回归方程题目,需掌握线性回归方程必过样本中心点这一特征,属于基础题.14、【解析】

先求解,再求解,再利用降幂公式求解即可.【详解】由,又为第二象限角,故,且.又.故答案为:【点睛】本题主要考查了降幂公式的用法等,属于基础题型.15、1【解析】

由等差数列的求和公式和性质可得,代入已知式子可得.【详解】由等差数列的求和公式和性质可得:=,且,∴.故答案为:1.【点睛】本题考查了等差数列的求和公式及性质的应用,属于基础题.16、4【解析】

先计算a5【详解】aaa故答案为4【点睛】本题考查了等比数列的计算,意在考查学生的计算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)这套设备使用6年,可使年平均利润最大,最大利润为35万元【解析】

(1)运用等差数列前项和公式可以求出年的维护费,这样可以由题意可以求出该设备给企业带来的总利润(万元)与使用年数的函数关系;(2)利用基本不等式可以求出年平均利润最大值.【详解】解:(1)由题意知,年总收入为万元年维护总费用为万元.∴总利润,即,(2)年平均利润为∵,∴当且仅当,即时取“”∴答:这套设备使用6年,可使年平均利润最大,最大利润为35万元.【点睛】本题考查了应用数学知识解决生活实际问题的能力,考查了基本不等式的应用,考查了数学建模能力,考查了数学运算能力.18、(1)当汽车的平均速度时车流量达到最大值。(2)【解析】

(1)首先根据题意求出,再利用基本不等式即可求出答案.(2)根据题意列出不等式,解不等式即可.【详解】(1)有题知:,解得.所以,因为,当且仅当时,取“”.所以当汽车的平均速度时车流量达到最大值.(2)有题知:,整理得:,解得:.所以当时,在该时间段内车流量至少为千辆/小时.【点睛】本题第一问考查利用基本不等式求最值,第二问考查了二次不等式的解法,属于中档题.19、(1);(2)不存在,理由见详解;(3)见详解.【解析】

(1)根据题意,得到,求解即可得出结果;(2)先假设存在等差数列为“阿当数列”,设公差为,则,根据等差数列求和公式,结合题中条件,得到,即对任意都成立,判断出,推出矛盾,即可得出结果;(3)设等比数列的公比为,根据为“阿当数列”,推出在数列中,为最小项;在数列中,为最小项;得到,,再由数列每一项均为正整数,得到,或,;分别讨论,和,两种情况,结合数列的增减性,即可得出结果.【详解】(1)由题意可得:,,即,解得或;所以实数的取值范围是;(2)假设存在等差数列为“阿当数列”,设公差为,则,由可得:,又,所以对任意都成立,即对任意都成立,因为,且,所以,与矛盾,因此,不存在等差数列为“阿当数列”;(3)设等比数列的公比为,则,且每一项均为正整数,因为为“阿当数列”,所以,所以,;因为,即在数列中,为最小项;同理,在数列中,为最小项;由为“阿当数列”,只需,即,又因为数列不是“阿当数列”,所以,即,由数列每一项均为正整数,可得:,所以,或,;当,时,,则,令,则,所以,即数列为递增数列,所以,因为,所以对任意,都有,即数列是“阿当数列”;当,时,,则,显然数列是递减数列,,故数列不是“阿当数列”;综上,当时,数列是“阿当数列”;当时,数列不是“阿当数列”.【点睛】本题主要考查数列的综合,熟记等差数列与等比数列的通项公式与求和公式,以及数列的性质即可,属于常考题型.20、(1);(2).【解析】

(1)利用与的关系可得,再利用等差数列的通项公式即可求解.(2)由(1)求出,再利用裂项求和法即可求解.【详解】解:(1)因为,①所以当时,,又,故.当时,,②①②得,,整理得.因为,所以,所以是以为首项,以1为公差的等差数列.所以,即.(2)由(1)及得,,所以.【点睛】本小题考查与的关系、等差数列的定义及通项公式、数列求和等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、分类与整合思想等.21、(1);(2)【解析】

(1)由题目条件a=1,可以将(1+b)(sinA-sinB)=(c-b)sinC中的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论