安徽省阜阳一中2025届高一下数学期末考试模拟试题含解析_第1页
安徽省阜阳一中2025届高一下数学期末考试模拟试题含解析_第2页
安徽省阜阳一中2025届高一下数学期末考试模拟试题含解析_第3页
安徽省阜阳一中2025届高一下数学期末考试模拟试题含解析_第4页
安徽省阜阳一中2025届高一下数学期末考试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省阜阳一中2025届高一下数学期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一组数平均数是,方差是,则另一组数,的平均数和方差分别是()A. B.C. D.2.要完成下列两项调查:①从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户调查社会购买力的某项指标;②从某中学的15名艺术特长生中选出3名调查学习负担情况,宜采用的抽样方法依次为()A.①随机抽样法,②系统抽样法B.①分层抽样法,②随机抽样法C.①系统抽样法,②分层抽样法D.①②都用分层抽样法3.已知向量,,,且,则实数的值为A. B. C. D.4.如图,E是平行四边形ABCD的边AD的中点,设等差数列的前n项和为,若,则()A.25 B. C. D.555.已知,,是三条不同的直线,,是两个不同的平面,则下列命题正确的是A.若,,,,,则B.若,,,,则C.若,,,,,则D.若,,,则6.若变量满足约束条件,则的最大值是()A.0 B.2 C.5 D.67.函数图象的一条对称轴在内,则满足此条件的一个值为()A. B. C. D.8.已知直三棱柱的所有顶点都在球0的表面上,,,则=()A.1 B.2 C. D.49.已知数列的前4项依次为,1,,,则该数列的一个通项公式可以是()A. B.C. D.10.长方体共顶点的三个相邻面面积分别为,这个长方体的顶点在同一个球面上,则这个球的表面积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数在上是减函数,则的取值范围是________.12.已知锐角、满足,,则的值为______.13.已知,则__________.14.若数列满足(),且,,__.15.若一个圆锥的高和底面直径相等且它的体积为,则此圆锥的侧面积为______.16.已知等差数列中,,则_______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在正方体,中,,,,,分别是棱,,,,的中点.(1)求证:平面平面;(2)求平面将正方体分成的两部分体积之比.18.写出集合的所有子集.19.求下列方程和不等式的解集(1)(2)20.已知常数且,在数列中,首项,是其前项和,且,.(1)设,,证明数列是等比数列,并求出的通项公式;(2)设,,证明数列是等差数列,并求出的通项公式;(3)若当且仅当时,数列取到最小值,求的取值范围.21.如图,正方体的棱长为2,E,F分别为,AC的中点.(1)证明:平面;(2)求三棱锥的体积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

直接利用公式:平均值方差为,则的平均值和方差为:得到答案.【详解】平均数是,方差是,的平均数为:方差为:故答案选B【点睛】本题考查了平均数和方差的计算:平均数是,方差是,则的平均值和方差为:.2、B【解析】①由于社会购买力与收入有关系,所以应采用分层抽样法;②由于人数少,可以采用简单随机抽样法要完成下列二项调查:①从某社区125户高收入家庭,280户中等收入家庭,95户低收入家庭中,选出100户调查社会解:∵社会购买力的某项指标,受到家庭收入的影响而社区中各个家庭收入差别明显①用分层抽样法,而从某中学的15名艺术特长生,要从中选出3人调查学习负担情况的调查中个体之间差别不大,且总体和样本容量较小,∴②用随机抽样法故选B3、A【解析】

求出的坐标,由得,得到关于的方程.【详解】,,因为,所以,故选A.【点睛】本题考查向量减法和数量积的坐标运算,考查运算求解能力.4、D【解析】

根据向量的加法和平面向量定理,得到和的值,从而得到等差数列的公差,根据等差数列求和公式,得到答案.【详解】因为E是平行四边形ABCD的边AD的中点,所以,因为,所以,,所以等差数列的公差,所以.故选:D.【点睛】本题考查向量的加法和平面向量定理,等差数列求和公式,属于简单题.5、D【解析】

逐一分析选项,得到答案.【详解】A.根据条件可知,若,不能推出;B.若,就不能推出;C.条件中没有,所以不能推出;D.因为,,所以,因为,所以.【点睛】本题考查了面面平行的判断,属于基础题型,需要具有空间想象能力,以及逻辑推理能力.6、C【解析】

由题意作出不等式组所表示的平面区域,将化为,相当于直线的纵截距,由几何意义可得结果.【详解】由题意作出其平面区域,令,化为,相当于直线的纵截距,由图可知,,解得,,则的最大值是,故选C.【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.7、A【解析】

求出函数的对称轴方程,使得满足在内,解不等式即可求出满足此条件的一个φ值.【详解】解:函数图象的对称轴方程为:xk∈Z,函数图象的一条对称轴在内,所以当k=0时,φ故选A.【点睛】本题是基础题,考查三角函数的基本性质,不等式的解法,考查计算能力,能够充分利用基本函数的性质解题是学好数学的前提.8、B【解析】

由题得在底面的投影为的外心,故为的中点,再利用数量积计算得解.【详解】依题意,在底面的投影为的外心,因为,故为的中点,,故选B.【点睛】本题主要考查平面向量的运算,意在考查学生对该知识的理解掌握水平,属于基础题.9、A【解析】

根据各选择项求出数列的首项,第二项,用排除法确定.【详解】可用排除法,由数列项的正负可排除B,D,再看项的绝对值,在C中不合题意,排除C,只有A.可选.故选:A.【点睛】本题考查数列的通项公式,已知数列的前几项,选择一个通项公式,比较方便,可以利用通项公式求出数列的前几项,把不合的排除即得.10、A【解析】

设长方体的棱长为,球的半径为,根据题意有,再根据球的直径是长方体的体对角线求解.【详解】设长方体的棱长为,球的半径为,根据题意,,解得,所以,所以外接球的表面积,故选:A【点睛】本题主要考查了球的组合体问题,还考查了运算求解的能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据二次函数的图象与性质,即可求得实数的取值范围,得到答案.【详解】由题意,函数表示开口向下,且对称轴方程为的抛物线,当函数在上是减函数时,则满足,解得,所以实数的取值范围.故答案为:.【点睛】本题主要考查了二次函数的图象与性质的应用,其中解答中熟记二次函数的图象与性质,列出相应的不等式是解答的关键,着重考查了推理与运算能力,属于基础题.12、【解析】

计算出角的取值范围,利用同角三角函数的平方关系计算出的值和的值,然后利用两角差的余弦公式可计算出的值.【详解】由题意可知,,,,则,.因此,.故答案为.【点睛】本题考查利用两角差的余弦公式求值,同时也考查了同角三角函数的平方关系求值,解题时要明确所求角与已知角之间的关系,合理利用公式是解题的关键,考查运算求解能力,属于中等题.13、【解析】14、1【解析】

由数列满足,即,得到数列的奇数项和偶数项分别构成公比为的等比数列,利用等比数列的极限的求法,即可求解.【详解】由题意,数列满足,即,又由,,所以数列的奇数项构成首项为1,公比为,偶数项构成首项为,公比为的等比数列,当为奇数时,可得,当为偶数时,可得.所以.故答案为:1.【点睛】本题主要考查了等比数列的定义,以及无穷等比数列的极限的计算,其中解答中得出数列的奇数项和偶数项分别构成公比为的等比数列是解答的关键,着重考查了推理与运算能力,属于基础题.15、【解析】

先由圆锥的体积公式求出圆锥的底面半径,再结合圆锥的侧面积公式求解即可.【详解】解:设圆锥的底面半径为,则圆锥的高为,母线长为,由圆锥的体积为,则,即,则此圆锥的侧面积为.故答案为:.【点睛】本题考查了圆锥的体积公式,重点考查了圆锥的侧面积公式,属基础题.16、【解析】

设等差数列的公差为,用与表示等式,再用与表示代数式可得出答案。【详解】设等差数列的公差为,则,因此,,故答案为:。【点睛】本题考查等差数列中项的计算,解决等差数列有两种方法:基本性质法(与下标相关的性质)以及基本量法(用首项和公差来表示相应的量),一般利用基本量法来进行计算,此外,灵活利用与下标有关的基本性质进行求解,能简化计算,属于中等题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】

(1)先证明平面,再证明平面平面;(2)连接,,则截面右侧的几何体为四棱锥和三棱锥,再求出每一部分的体积得解.【详解】(1)证明:在正方体中,连接.因为,分别是,的中点,所以.因为平面,平面,所以.因为,所以平面,平面,所以,同理,因为,所以平面,因为平面,所以平面平面;(2)连接,,则截面右侧的几何体为四棱锥和三棱锥,设正方体棱长为1,所以,所以平面将正方体分成的两部分体积之比为.【点睛】本题主要考查面面垂直关系的证明和几何体体积的计算,意在考查学生对这些知识的理解掌握水平,属于中档题.18、【解析】

根据集合的子集的定义列举出即可.【详解】集合的所有子集有:【点睛】本题考查了集合的子集的定义,掌握子集的定义是解题的关键,本题是一道基础题.19、(1)或;(2).【解析】

(1)先将方程变形得到,根据,得到,进而可求出结果;(2)由题意得到,求解即可得出结果.【详解】(1)由得,因为,所以,因此或;即原方程的解集为:或;(2)由得,即,解得:.故,原不等式的解集为:.【点睛】本题主要考查解含三角函数的方程,以及反三角函数不等式,熟记三角函数性质,根据函数单调性即可求解,属于常考题型.20、(1)证明见解析,;(2)证明见解析,;(3).【解析】

(1)令,求出的值,再令,由,得出,将两式相减得,再利用等比数列的定义证明为常数,可得出数列为等比数列,并确定等比数列的首项和公比,可求出;(2)由题意得出,再利用等差数列的定义证明出数列为等差数列,确定等差数列的首项和公差,可求出数列的通项公式;(3)求出数列的通项公式,由数列在时取最小值,可得出当时,,当时,,再利用参变量分离法可得出实数的取值范围.【详解】(1)当时,有,即,;当时,由,可得,将上述两式相减得,,,且,所以,数列是以,以为公比的等比数列,;(2)由(1)知,,由等差数列的定义得,且,所以,数列是以为首项,以为公差的等差数列,因此,;(3)由(2)知,,,由数列在时取最小值,可得出当时,,当时,,由,得,得在时恒成立,由于数列在时单调递减,则,此时,;由,得,得在时恒成立,由于数列在时单调递减,则,此时,.综上所述:实数的取值范围是.【点睛】本题考查利用定义证明等比数列和等差数列,证明时需结合题中数列递推式的结构进行证明,同时也考查数列最值问题,需要结合题中条件转化为与项的符号相

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论