2025届河北省宣化市第一中学高一下数学期末质量跟踪监视试题含解析_第1页
2025届河北省宣化市第一中学高一下数学期末质量跟踪监视试题含解析_第2页
2025届河北省宣化市第一中学高一下数学期末质量跟踪监视试题含解析_第3页
2025届河北省宣化市第一中学高一下数学期末质量跟踪监视试题含解析_第4页
2025届河北省宣化市第一中学高一下数学期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河北省宣化市第一中学高一下数学期末质量跟踪监视试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,长方体的体积为,E为棱上的点,且,三棱锥E-BCD的体积为,则=()A. B. C. D.2.甲、乙两名篮球运动员最近五场比赛的得分如茎叶图所示,则()A.甲的中位数和平均数都比乙高B.甲的中位数和平均数都比乙低C.甲的中位数比乙的中位数高,但平均数比乙的平均数低D.甲的中位数比乙的中位数低,但平均数比乙的平均数高3.数列{an}的通项公式an=,若{an}前n项和为24,则n为().A.25 B.576 C.624 D.6254.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,,第五组,如图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6 B.8 C.12 D.185.某程序框图如图所示,该程序运行后输出的值是()A. B. C. D.6.下列函数中,在区间上为减函数的是A. B. C. D.7.“纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样.为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为5的正方形将其包含在内,并向该正方形内随机投掷1000个点,己知恰有400个点落在阴影部分,据此可估计阴影部分的面积是A.2 B.3 C.10 D.158.已知平面向量满足:,,,若,则的值为()A. B. C.1 D.-19.设实数满足约束条件,则的最大值为()A. B.4 C.5 D.10.若点(m,n)在反比例函数y=的图象上,其中m<0,则m+3n的最大值等于()A.2 B.2 C.﹣2 D.﹣2二、填空题:本大题共6小题,每小题5分,共30分。11.不等式的解集为_____________________。12.设等差数列的前项和为,若,,则的值为______.13.设,用,表示所有形如的正整数集合,其中且,为集合中的所有元素之和,则的通项公式为_______14.已知无穷等比数列的首项为,公比为,则其各项的和为__________.15.已知向量(1,2),(x,4),且∥,则_____.16.在△ABC中,若a2=b2+bc+c2,则A=________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列满足,.(1)求证:数列为等比数列,并求数列的通项公式;(2)令,求数列的前项和.18.在平面直角坐标系xOy中,曲线与x轴交于不同的两点A,B,曲线Γ与y轴交于点C.(1)是否存在以AB为直径的圆过点C?若存在,求出该圆的方程;若不存在,请说明理由;(2)求证:过A,B,C三点的圆过定点,并求出该定点的坐标.19.设函数f(x)=2cos2x﹣cos(2x﹣).(1)求f(x)的周期和最大值;(2)已知△ABC中,角A.B.C的对边分别为A,B,C,若f(π﹣A)=,b+c=2,求a的最小值.20.某校为创建“绿色校园”,在校园内种植树木,有A、B、C三种树木可供选择,已知这三种树木6年内的生长规律如下:A树木:种植前树木高0.84米,第一年能长高0.1米,以后每年比上一年多长高0.2米;B树木:种植前树木高0.84米,第一年能长高0.04米,以后每年生长的高度是上一年生长高度的2倍;C树木:树木的高度(单位:米)与生长年限(单位:年,)满足如下函数:(表示种植前树木的高度,取).(1)若要求6年内树木的高度超过5米,你会选择哪种树木?为什么?(2)若选C树木,从种植起的6年内,第几年内生长最快?21.已知圆过点和,且圆心在直线上.(Ⅰ)求圆的标准方程;(Ⅱ)求直线:被圆截得的弦长.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

分别求出长方体和三棱锥E-BCD的体积,即可求出答案.【详解】由题意,,,则.故选D.【点睛】本题考查了长方体与三棱锥的体积的计算,考查了学生的计算能力,属于基础题.2、B【解析】

分别计算出两组数据的中位数和平均数即可得出选项.【详解】根据题意:甲的平均数为:,中位数为29,乙的平均数为:,中位数为30,所以甲的中位数和平均数都比乙低.故选:B【点睛】此题考查根据茎叶图表示的数据分别辨析平均数和中位数的大小关系,分别计算求解即可得出答案.3、C【解析】an==-(),前n项和Sn=-[(1-)+(-)]+…+()]=-1=24,故n=624.故选C.4、C【解析】试题分析:由直方图可得分布在区间第一组与第二组共有21人,分布在区间第一组与第二组的频率分别为1.24,1.16,所以第一组有12人,第二组8人,第三组的频率为1.36,所以第三组的人数:18人,第三组中没有疗效的有6人,第三组中有疗效的有12人.考点:频率分布直方图5、B【解析】

模拟程序运行后,可得到输出结果,利用裂项相消法即可求出答案.【详解】模拟程序运行过程如下:0),判断为否,进入循环结构,1),判断为否,进入循环结构,2),判断为否,进入循环结构,3),判断为否,进入循环结构,……9),判断为否,进入循环结构,10),判断为是,故输出,故选:B.【点睛】本题主要考查程序框图,考查裂项相消法,难度不大.一般遇见程序框图求输出结果时,常模拟程序运行以得到结论.6、D【解析】试题分析:在区间上为增函数;在区间上先增后减;在区间上为增函数;在区间上为减函数,选D.考点:函数增减性7、C【解析】

根据古典概型概率公式以及几何概型概率公式分别计算概率,解方程可得结果.【详解】设阴影部分的面积是s,由题意得4001000【点睛】(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.8、C【解析】

将代入,化简得到答案.【详解】故答案选C【点睛】本题考查了向量的运算,意在考查学生的计算能力.9、A【解析】

作出可行域,作出目标函数对应的直线,平移该直线可得最优解.【详解】作出可行域,如图内部(含边界),作直线,向上平移直线,增大,当直线过点时,得最大值为,故选:A.【点睛】本题考查简单的线性规划,解题关键是作出可行域和目标函数对应的直线.10、C【解析】

根据题意可得出,再根据可得,将添上两个负号运用基本不等式,即可求解.【详解】由题意,可得,因为,所以,所以,当且仅当,即时,等号成立,故选:C.【点睛】本题主要考查了基本不等式的应用,其中解答中熟记基本不等式的使用条件,合理运算是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、或【解析】

利用一元二次函数的图象或转化为一元一次不等式组解一元二次不等式.【详解】由,或,所以或,不等式的解集为或.【点睛】本题考查解一元二次不等式,考查计算能力,属于基本题.12、-6【解析】

由题意可得,求解即可.【详解】因为等差数列的前项和为,,所以由等差数列的通项公式与求和公式可得解得.故答案为-6.【点睛】本题考查了等差数列的通项公式与求和公式,考查了学生的计算能力,属于基础题.13、【解析】

把集合中每个数都表示为2的0到的指数幂相加的形式,并确定,,,,每个数都出现次,于是利用等比数列求和公式计算,可求出数列的通项公式.【详解】由题意可知,,,,是0,1,2,,的一个排列,且集合中共有个数,若把集合中每个数表示为的形式,则,,,,每个数都出现次,因此,,故答案为:.【点睛】本题以数列新定义为问题背景,考查等比数列的求和公式,考查学生的理解能力与计算能力,属于中等题.14、【解析】

根据无穷等比数列求和公式求出等比数列的各项和.【详解】由题意可知,等比数列的各项和为,故答案为:.【点睛】本题考查等比数列各项和的求解,解题的关键就是利用无穷等比数列求和公式进行计算,考查计算能力,属于基础题.15、.【解析】

根据求得,从而可得,再求得的坐标,利用向量模的公式,即可求解.【详解】由题意,向量,则,解得,所以,则,所以.【点睛】本题主要考查了向量平行关系的应用,以及向量的减法和向量的模的计算,其中解答中熟记向量的平行关系,以及向量的坐标运算是解答的关键,着重考查了推理与运算能力,属于基础题.16、120°【解析】∵a2=b2+bc+c2,∴b2+c2-a2=-bc,∴cosA===-,又∵A为△ABC的内角,∴A=120°故答案为:120°三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)由知:,利用等比数列的通项公式即可得出;(2)bn=|11﹣2n|,设数列{11﹣2n}的前n项和为Tn,则.当n≤5时,Sn=Tn;当n≥6时,Sn=2S5﹣Tn.【详解】(1)证明:由知,所以数列是以为首项,为公比的等比数列.则,.(2),设数列前项和为,则,当时,;当时,;所以.【点睛】本题考查了等比数列与等差数列的通项公式及其前n项和公式、分类讨论方法,考查了推理能力与计算能力,属于中档题.18、(1)存在,(2)证明见解析,圆方程恒过定点或【解析】

(1)将曲线Γ方程中的y=1,得x2﹣mx+2m=1.利用韦达定理求出C,通过坐标化,求出m得到所求圆的方程.(2)设过A,B,C的圆P的方程为(x﹣a)2+(y﹣b)2=r2列出方程组利用圆系方程,推出圆P方程恒过定点即可.【详解】由曲线Γ:y=x2﹣mx+2m(m∈R),令y=1,得x2﹣mx+2m=1.设A(x1,1),B(x2,1),则可得△=m2﹣8m>1,x1+x2=m,x1x2=2m.令x=1,得y=2m,即C(1,2m).(1)若存在以AB为直径的圆过点C,则,得,即2m+4m2=1,所以m=1或.由△>1,得m<1或m>8,所以,此时C(1,﹣1),AB的中点M(,1)即圆心,半径r=|CM|故所求圆的方程为.(2)设过A,B,C的圆P的方程为(x﹣a)2+(y﹣b)2=r2满足代入P得展开得(﹣x﹣2y+2)m+x2+y2﹣y=1当,即时方程恒成立,∴圆P方程恒过定点(1,1)或.【点睛】本题考查圆的方程的应用,圆系方程恒过定点的求法,考查转化思想以及计算能力.19、(1)周期为π,最大值为2.(2)【解析】

(1)利用倍角公式降幂,展开两角差的余弦,将函数的关系式化简余弦型函数,可求出函数的周期及最值;(2)由f(π﹣A),求解角A,再利用余弦定理和基本不等式求a的最小值.【详解】(1)函数f(x)=2cos2x﹣cos(2x)=1+cos2x=cos(2x)+1,∵﹣1≤cos(2x)≤1,∴T,f(x)的最大值为2;(2)由题意,f(π﹣A)=f(﹣A)=cos(﹣2A)+1,即:cos(﹣2A),又∵0<A<π,∴2A,∴﹣2A,即A.在△ABC中,b+c=2,cosA,由余弦定理,a2=b2+c2﹣2bccosA=(b+c)2﹣bc,由于:bc,当b=c=1时,等号成立.∴a2≥4﹣1=3,即a.则a的最小值为.【点睛】本题考查三角函数的恒等变换,余弦形函数的性质的应用,余弦定理和基本不等式的应用,是中档题.20、(1)选择C;(2)第4或第5年.【解析】

(1)根据已知求出三种树木六年末的高度,判断得解;(2)设为第年内树木生长的高度,先求出,设,则,.再利用分析函数的单调性,分析函数的图像得解.【详解】(1)由题意可知,A、B、C三种树木随着时间的增加,高度也在增加,6年末:A树木的高度为(米):B树木的高度为(米):C树木的高度为(米),所以选择C树木.(2)设为第年内树木生长的高度,则,所以,,.设,则,.令,因为在区间上是减函数,在区间上是增函数,所以当时,取得最小值,从而取得最大值,此时,解得,因为,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论