版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省张家口市涿鹿中学2025届高一数学第二学期期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将一个底面半径和高都是的圆柱挖去一个以上底面为底面,下底面圆心为顶点的圆锥后,剩余部分的体积记为,半径为的半球的体积记为,则与的大小关系为()A. B. C. D.不能确定2.下列函数中,最小正周期为的是()A. B. C. D.3.在中,“”是“”的()A.充要条件 B.必要不充分条件C.充分不必要条件 D.既不充分也不必要条件4.一枚骰子连续投两次,则两次向上点数均为1的概率是()A. B. C. D.5.在中,内角所对的边分别为,若,且,则的形状是()A.锐角三角形 B.钝角三角形 C.等腰直角三角形 D.不确定6.已知向量,且,则()A.2 B. C. D.7.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分则可中奖,小明要想增加中奖机会,应选择的游戏盘是A. B. C. D.8.若正数满足,则的最小值为A. B.C. D.39.数列只有5项,分别是3,5,7,9,11,的一个通项公式为()A. B. C. D.10.设为等差数列的前项和,.若,则()A.的最大值为 B.的最小值为 C.的最大值为 D.的最小值为二、填空题:本大题共6小题,每小题5分,共30分。11.数列中,若,,则______;12.已知正三棱柱木块,其中,,一只蚂蚁自点出发经过线段上的一点到达点,当沿蚂蚁走过的最短路径,截开木块时,两部分几何体的体积比为______.13.若采用系统抽样的方法从420人中抽取21人做问卷调查,为此将他们随机编号为1,2,…,420,则抽取的21人中,编号在区间[241,360]内的人数是______14.对于任意x>0,不等式3x2-2mx+12>015.已知向量,,若,则实数__________.16.如图,已知扇形和,为的中点.若扇形的面积为1,则扇形的面积为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在直四棱柱中,底面为等腰梯形,,,,,、、分别是、、的中点.(1)证明:直线平面;(2)求直线与面所成角的大小;(3)求二面角的平面角的余弦值.18.在中,,且边上的中线长为,(1)求角的大小;(2)求的面积.19.已知函数,其中数列是公比为的等比数列,数列是公差为的等差数列.(1)若,,分别写出数列和数列的通项公式;(2)若是奇函数,且,求;(3)若函数的图像关于点对称,且当时,函数取得最小值,求的最小值.20.如图,在四棱锥中,底面为矩形,为等边三角形,且平面平面.为的中点,为的中点,过点,,的平面交于.(1)求证:平面;(2)若时,求二面角的余弦值.21.已知数列{}的首项.(1)求证:数列为等比数列;(2)记,若,求最大正整数.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据题意分别表示出,通过比较。【详解】所以,选C。【点睛】,,。记住这几个公式即可,属于基础题目。2、D【解析】
由函数的最小正周期为,逐个选项运算即可得解.【详解】解:对于选项A,的最小正周期为,对于选项B,的最小正周期为,对于选项C,的最小正周期为,对于选项D,的最小正周期为,故选D.【点睛】本题考查了三角函数的最小正周期,属基础题.3、A【解析】
余弦函数在上单调递减【详解】因为A,B是的内角,所以,在上余弦函数单调递减,在中,“”“”【点睛】充要条件的判断,是高考常考知识点,充要条件的判断一般有三种思路:定义法、等价关系转化法、集合关系法。4、D【解析】
连续投两次骰子共有36种,求出满足情况的个数,即可求解.【详解】一枚骰子投一次,向上的点数有6种,则连续投两次骰子共有36种,两次向上点数均为1的有1种情况,概率为.故选:D.【点睛】本题考查古典概型的概率,属于基础题.5、C【解析】
通过正弦定理可得可得三角形为等腰,再由可知三角形是直角,于是得到答案.【详解】因为,所以,所以,即.因为,所以,又因为,所以,所以,故的形状是等腰直角三角形.【点睛】本题主要考查利用正弦定理判断三角形形状,意在考查学生的分析能力,计算能力,难度中等.6、B【解析】
根据向量平行得到,再利用和差公式计算得到答案.【详解】向量,且,则..故选:.【点睛】本题考查了向量平行求参数,和差公式,意在考查学生的综合应用能力.7、A【解析】由几何概型公式:A中的概率为,B中的概率为,C中的概率为,D中的概率为.本题选择A选项.点睛:解答几何概型问题的关键在于弄清题中的考察对象和对象的活动范围.当考察对象为点,点的活动范围在线段上时,用线段长度比计算;当考察对象为线时,一般用角度比计算,即当半径一定时,由于弧长之比等于其所对应的圆心角的度数之比,所以角度之比实际上是所对的弧长(曲线长)之比.8、A【解析】
由,利用基本不等式,即可求解,得到答案.【详解】由题意,因为,则,当且仅当,即时等号成立,所以的最小值为,故选A.【点睛】本题主要考查了利用基本不等式求最小值问题,其中解答中合理构造,利用基本不是准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.9、B【解析】
根据题意,得到数列为等差数列,通过首项和公差,得到通项.【详解】因为数列只有5项,分别是3,5,7,9,11,所以是以为首项,为公差的等差数列,.故选:B.【点睛】本题考查求等差数列的通项,属于简单题.10、C【解析】
由已知条件推导出(n2﹣n)d<2n2d,从而得到d>0,所以a1<0,a8>0,由此求出数列{Sn}中最小值是S1.【详解】∵(n+1)Sn<nSn+1,∴Sn<nSn+1﹣nSn=nan+1即na1na1+n2d,整理得(n2﹣n)d<2n2d∵n2﹣n﹣2n2=﹣n2﹣n<0∴d>0∵1<0∴a1<0,a8>0数列的前1项为负,故数列{Sn}中最小值是S1故选C.【点睛】本题考查等差数列中前n项和最小值的求法,是中档题,解题时要认真审题,注意等差数列的性质的灵活运用.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
先分组求和得,再根据极限定义得结果.【详解】因为,,……,,所以则.【点睛】本题考查分组求和法、等比数列求和、以及数列极限,考查基本求解能力.12、【解析】
将正三棱柱的侧面沿棱展开成平面,连接与的交点即为满足最小时的点,可知点为棱的中点,即可计算出沿着蚂蚁走过的路径截开木块时两几何体的体积之比.【详解】将正三棱柱沿棱展开成平面,连接与的交点即为满足最小时的点.由于,,再结合棱柱的性质,可得,一只蚂蚁自点出发经过线段上的一点到达点,当沿蚂蚁走过的最短路径,为的中点,因为三棱柱是正三棱柱,所以当沿蚂蚁走过的最短路径,截开木块时,两部分几何体的体积比为:.故答案为:.【点睛】本题考查棱柱侧面最短路径问题,涉及棱柱侧面展开图的应用以及几何体体积的计算,考查分析问题解决问题能力,是中档题.13、6【解析】试题分析:由题意得,编号为,由得共6个.考点:系统抽样14、(-∞,6)【解析】
先参变分离转化为对应函数最值问题,再通过求函数最值得结果.【详解】因为3x2-2mx+12>0,所以m<3x2+【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.15、【解析】
根据平面向量时,列方程求出的值.【详解】解:向量,,若,则,即,解得.故答案为:.【点睛】本题考查了平面向量的坐标运算应用问题,属于基础题.16、1【解析】
设,在扇形中,利用扇形的面积公式可求,根据已知,在扇形中,利用扇形的面积公式即可计算得解.【详解】解:设,扇形的面积为1,即:,解得:,为的中点,,在扇形中,.故答案为:1.【点睛】本题主要考查了扇形的面积公式的应用,考查了数形结合思想和转化思想,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)(3)【解析】
(1)取的中点,证明为平行四边形,且,再由三角形中位线证明,最后由线面平行的判定定理证明即可;(2)作交于点,由线面垂直关系得到直线与面所成角为,再根据是正三角形求解即可;(3)由(2)知,平面,再证明和分别垂直于,求出直线与面所成角为,再求出和的长度即可求解.【详解】(1)在直四棱柱中,取的中点,连接,,,因为,,且,所以为平行四边形,所以,又因为、分别是棱、的中点,所以,所以,因为.所以、、、四点共面,所以平面,又因为平面,所以直线平面.(2)因为,,是棱的中点,所以,为正三角形,取的中点,则,又因为直四棱柱中,平面,所以,所以平面,即直线与面所成角为,所以,即,所以直线与面所成角为.(3)过在平面内作,垂足为,连接.因为面,即,且与相交于点,故且,则为二面角的平面角,在正三角形中,,在中,,∵,∴,在中,,,所以二面角的余弦值为.【点睛】本题主要考查线面平行的判定、线面角和二面角的求法,考查学生的空间想象能力和对线面关系的掌握,属于中档题.18、(Ⅰ);(Ⅱ).【解析】
(1)本题可根据三角函数相关公式将化简为,然后根据即可求出角的大小;(2)本题首先可设的中点为,然后根据向量的平行四边形法则得到,再然后通过化简计算即可求得,最后通过三角形面积公式即可得出结果.【详解】(1)由正弦定理边角互换可得,所以.因为,所以,即,即,整理得.因为,所以,所以,即,所以.因为,所以,即.(2)设的中点为,根据向量的平行四边形法则可知所以,即,因为,,所以,解得(负值舍去).所以.【点睛】本题考查三角恒等变换公式及解三角形相关公式的应用,考查了向量的平行四边形法则以及向量的运算,考查了化归与转化思想,体现了综合性,是难题.19、(1),;(2);(3)1【解析】
(1)根据等差数列、等比数列的通项公式即可求解;(2)根据奇函数的定义得出,化简得,解方程可得(3)将化成的形式,依题意有,从而得到,因为当时,函数取得最小值,所以,两式相减即可求解.【详解】(1)由等差数列、等比数列的通项公式可得,;(2)因为,所以即,所以又由,得(3)记,则,其中;因为的图像关于点对称,所以①因为当时,函数取得最小值,所以②②-①得,因为,当,时,取得最小值为0【点睛】本题主要考查了等差数列、等比数列的通项公式的求法、三角函数的化简以及正弦型函数图像的性质,考查较全面,属于难题.20、(1)证明见解析;(2)【解析】
(1)首先证明平面,由平面平面,可说明,由此可得四边形为平行四边形,即可证明平面;(2)延长交于点,过点作交直线于点,则即为二面角的平面角,求出的余弦值即可得到答案.【详解】(1)∵为矩形∴,平面,平面∴平面.又因为平面平面,∴.为中点,为中点,所以平行且等于,即四边形为平行四边形所以,平面,平面所以平面(2)不妨设,.因为为中点,为等边三角形,所以,,且∵,所以有平面,故因为平面平面∴平面,又,∴平面,则延长交于点,过点作交直线于点,由于平行且等于,所以为中点,,由于,,,所以平面,则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 煤炭资源考试题目及答案
- 值班防雷电安全教育
- 2024统编版八年级语文上册第六单元专项训练(学生版+解析版)
- 纲要考试题及答案
- 方差题目及答案
- 7月妇科护理技术模考试题(含参考答案)
- 【初中 物理】第十二章简单机械章末复习课件-2025-2026学年人教版物理八年级下册
- 小学五年级语文上册第三单元爱国情怀主题升华课件
- 2026年台州市黄岩经开投资集团有限公司下属公司公开招聘工作人员备考题库及参考答案详解
- 湖北省武汉市光谷未来学校2025-2026学年八年级上学期12月月考语文卷(含答案)
- 易错点2.2摩擦力(解析版)高考易错点解读和针对训练
- 2025至2030丝苗米市场行业发展趋势分析与未来投资战略咨询研究报告
- 2025年陕西国际经贸集团有限公司招聘(31人)笔试备考重点题库及答案解析
- 江苏省南京市联合体(雨花、江宁、浦口区)2024-2025学年七年级上学期期末考试语文试题
- 2025秋国开电大《人力资源管理》形考任务1234参考答案
- 2025仁怀市公共交通服务有限公司招聘招聘141人考试笔试备考试题及答案解析
- 拳击机器人课件
- 2026年电商评价管理策略与产品口碑优化实操手册
- 基于国家智慧教育云平台的农村小学科学实验课创新教学模式实践与反思教学研究课题报告
- 小学STEM综合活动教学设计方案
- 2026年电商活动策划实战培训课件
评论
0/150
提交评论