版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省张掖市2025届高一数学第二学期期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,,则=()A. B. C. D.2.直线l:与圆C:交于A,B两点,则当弦AB最短时直线l的方程为A. B.C. D.3.在正项等比数列中,,数列的前项之和为()A. B. C. D.4.化简的结果是()A. B. C. D.5.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了如图所示的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳6.已知两条直线与两个平面,给出下列命题:①若,则;②若,则;③若,则;④若,则;其中正确的命题个数为A.1 B.2 C.3 D.47.一个圆柱的底面直径与高都等于球的直径,设圆柱的侧面积为,球的表面积为,则()A. B. C. D.18.在△ABC中,内角A,B,C的对边分别是a,b,c,若cosB=,=2,且S△ABC=,则b的值为()A.4 B.3 C.2 D.19.不等式所表示的平面区域是()A. B.C. D.10.已知命题,则命题的否定为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.《九章算术》是体现我国古代数学成就的杰出著作,其中(方田)章给出的计算弧田面积的经验公式为:弧田面积(弦矢矢2),弧田(如图阴影部分)由圆弧及其所对的弦围成,公式中“弦”指圆弧所对弦的长,“矢”等于半径长与圆心到弦的距离之差,现有弧长为米,半径等于米的弧田,则弧所对的弦的长是_____米,按照上述经验公式计算得到的弧田面积是___________平方米.12.直线的倾斜角的大小是_________.13.已知数列中,且当时,则数列的前项和=__________.14.已知正三棱柱木块,其中,,一只蚂蚁自点出发经过线段上的一点到达点,当沿蚂蚁走过的最短路径,截开木块时,两部分几何体的体积比为______.15.已知函数,,则的最大值是__________.16.化简:______.(要求将结果写成最简形式)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,某地三角工厂分别位于边长为2的正方形的两个顶点及中点处.为处理这三角工厂的污水,在该正方形区域内(含边界)与等距的点处建一个污水处理厂,并铺设三条排污管道,记辅设管道总长为千米.(1)按下列要求建立函数关系式:(i)设,将表示成的函数;(ii)设,将表示成的函数;(2)请你选用一个函数关系,确定污水厂位置,使铺设管道总长最短.18.如图,三棱柱中,,D为AB上一点,且平面.(1)求证:;(2)若四边形是矩形,且平面平面ABC,直线与平面ABC所成角的正切值等于2,,,求三楼柱的体积.19.已知向量,,函数.(1)若,,求的值;(2)若函数在区间上是单调递增函数,求正数的取值范围.20.如图所示,在直三棱柱中,,,M、N分别为、的中点.求证:平面;求证:平面.21.设数列的前项和为,若且求若数列满足,求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
解:因为由正弦定理,所以又c<a所以,所以2、A【解析】
先求出直线经过的定点,再求出弦AB最短时直线l的方程.【详解】由题得,所以直线l过定点P.当CP⊥l时,弦AB最短.由题得,所以.所以直线l的方程为.故选:A【点睛】本题主要考查直线过定点问题,考查直线方程的求法,考查直线和圆的位置关系,意在考查学生对这些知识的理解掌握水平和分析推理能力.3、B【解析】
根据等比数列的性质,即可解出答案。【详解】故选B【点睛】本题考查等比数列的性质,同底对数的运算,属于基础题。4、D【解析】
直接利用同角三角函数基本关系式以及二倍角公式化简求值即可.【详解】.故选.【点睛】本题主要考查应用同角三角函数基本关系式和二倍角公式对三角函数的化简求值.5、A【解析】
观察折线图可知月接待游客量每年7,8月份明显高于12月份,且折线图呈现增长趋势,高峰都出现在7、8月份,1月至6月的月接待游客量相对于7月至12月波动性更小.【详解】对于选项A,由图易知月接待游客量每年7,8月份明显高于12月份,故A错;对于选项B,观察折线图的变化趋势可知年接待游客量逐年增加,故B正确;对于选项C,D,由图可知显然正确.故选A.【点睛】本题考查折线图,考查考生的识图能力,属于基础题.6、A【解析】
结合线面平行定理和举例判断.【详解】若,则可能平行或异面,故①错误;若,则可能与的交线平行,故②错误;若,则,所以,故③正确;若,则可能平行,相交或异面,故④错误;故选A.【点睛】本题线面关系的判断,主要依据线面定理和举例排除.7、D【解析】
由圆柱的侧面积及球的表面积公式求解即可.【详解】解:设圆柱的底面半径为,则,则圆柱的侧面积为,球的表面积为,则,故选:D.【点睛】本题考查了圆柱的侧面积的求法,重点考查了球的表面积公式,属基础题.8、C【解析】试题分析:根据正弦定理可得,.在中,,.,,.,.故C正确.考点:1正弦定理;2余弦定理.9、D【解析】
根据二元一次不等式组表示平面区域进行判断即可.【详解】不等式组等价为或则对应的平面区域为D,
故选:D.【点睛】本题主要考查二元一次不等式组表示平区域,比较基础.10、C【解析】
根据全称命题的否定是特称命题,可直接得出结果.【详解】命题“”的否定是“”.故选C【点睛】本题主要考查全称命题的否定,只需改量词和结论即可,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
在中,由题意可知:,弧长为,即可以求出,则求得的值,根据题意可求矢和弦的值及弦长,利用公式可以完成.【详解】如上图在中,可得:,可以得:矢=所以:弧田面积(弦矢矢2)=所以填写(1).(2).【点睛】本题是数学文化考题,扇形为载体的新型定义题,求弦长属于简单的解三角形问题,而作为第二空,我们首先知道公式中涉及到了“矢”,所以我们必须把“矢”的定义弄清楚,再借助定义求出它的值,最后只是简单代入公式计算即能完成.12、【解析】试题分析:由题意,即,∴.考点:直线的倾斜角.13、【解析】
先利用累乘法计算,再通过裂项求和计算.【详解】,数列的前项和故答案为:【点睛】本题考查了累乘法,裂项求和,属于数列的常考题型.14、【解析】
将正三棱柱的侧面沿棱展开成平面,连接与的交点即为满足最小时的点,可知点为棱的中点,即可计算出沿着蚂蚁走过的路径截开木块时两几何体的体积之比.【详解】将正三棱柱沿棱展开成平面,连接与的交点即为满足最小时的点.由于,,再结合棱柱的性质,可得,一只蚂蚁自点出发经过线段上的一点到达点,当沿蚂蚁走过的最短路径,为的中点,因为三棱柱是正三棱柱,所以当沿蚂蚁走过的最短路径,截开木块时,两部分几何体的体积比为:.故答案为:.【点睛】本题考查棱柱侧面最短路径问题,涉及棱柱侧面展开图的应用以及几何体体积的计算,考查分析问题解决问题能力,是中档题.15、3【解析】函数在上为减函数,故最大值为.16、【解析】
结合诱导公式化简,再结合两角差正弦公式分析即可【详解】故答案为:【点睛】本题考查三角函数的化简,诱导公式的使用,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(i)(,其中).(ii).(2)污水厂设在与直线距离处【解析】
(1)(i)设的中点为,则,,,,由此可得关于的函数;(ii)由题意,则,,由此可得关于的函数;(2)设,,则,然后利用基本不等式求最值.【详解】解:(1)(i)设中点,则,,,,∴(,其中);(ii),,;(2)设,,则,,当,即时,取最小值,∴污水厂设在与直线距离处时,铺设管道总长最短,最短长度为千米.【点睛】本题主要考查根据实际问题选择函数模型,训练了利用换元法及基本不等式求最值,属于中档题.18、(1)见详解;(2)【解析】
(1)连接交于点,连接,利用线面平行的性质定理可得,从而可得为的中点,进而可证出(2)利用面面垂直的性质定理可得平面,从而可得三棱柱为直三棱柱,在中,根据等腰三角形的性质可得,进而可得棱柱的高为,利用柱体的体积公式即可求解.【详解】(1)连接交于点,连接,如图:由平面,且平面平面,所以,由为的中点,所以为的中点,又,(2)由四边形是矩形,且平面平面ABC,所以平面,即三棱柱为直三棱柱,在中,,,,所以,因为直线与平面ABC所成角的正切值等于2,在中,,所以..【点睛】本题考查了线面平行的性质定理、面面垂直的性质定理,同时考查了线面角以及柱体的体积公式,属于基础题.19、(1);(2)【解析】
(1)利用数量积公式结合二倍角公式,辅助角公式化简函数解析式,由,结合的范围以及平方关系得出的值,由结合两角差的余弦公式求解即可;(2)由整体法结合正弦函数的单调性得出该函数的单调增区间,则区间应该包含在的一个增区间内,根据包含关系列出不等式组,求解即可得出正数的取值范围.【详解】(1)因为,所以,即.因为,所以所以.所以.(2).令,得,因为函数在区间上是单调递增函数所以存在,使得所以有,即因为,所以又因为,所以,则,所以从而有,所以,所以.【点睛】本题主要考查了利用同角三角函数的基本关系,二倍角公式,两角差的余弦公式化简求值以及根据正弦型函数的单调性求参数范围,属于较难题.20、(1)见解析;(2)见解析.【解析】
(1)推导出,从而平面,进而,再由,,得是正方形,由此能证明平面.取的中点F,连BF、推导出四边形BMNF是平行四边形,从而,由此能证明平面.【详解】证明:在直三棱柱中,侧面底面ABC,且侧面底面,,即,平面,平面,,,是正方形,,平面取的中点F,连BF、在中,N、F是中点,,,又,,,,故四边形BMNF是平行四边形,,而面,平面,平面【点睛】本题考查线面垂直、线面平行的证明,考查
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年厦门国贸研学教育管理有限公司招聘备考题库及一套答案详解
- 2026年上海对外经贸大学孔子学院国际中文教育专职教师招聘备考题库带答案详解
- 2026年佛山市高明区富湾湖实验中学公开招聘临聘教师备考题库及一套参考答案详解
- 2026年广业环保集团“环聚英才、绿动未来”招聘备考题库及答案详解一套
- 2026年中建六局第八建设有限公司招聘备考题库含答案详解
- 2026年复旦大学附属肿瘤医院王红霞教授课题组招聘研究助理备考题库及一套完整答案详解
- 2025年铜陵高新控股集团有限公司工作人员招聘备考题库及1套完整答案详解
- 2026年周口市鹿邑县引进高层次人才备考题库完整参考答案详解
- 2026年中国检验认证集团新疆有限公司阿拉山口分公司招聘备考题库及答案详解一套
- 2026年四川大学华西公共卫生学院华西第四医院临床护士招聘备考题库及答案详解参考
- 广东省汕头市金平区2024-2025学年九年级上学期期末物理试题(含答案)
- 临床用血技术规范2025年版与2000年版对照学习课件
- 自然资源执法考试试题及答案
- 梅毒检验报告课件
- 2025秋冀人版(新教材)小学科学三年级上册知识点及期末测试卷及答案
- 医院感染管理年度报告
- 骨科主任述职报告
- 体检跌倒应急预案
- 社会治理创新模式比较研究
- 国开(内蒙古)2025年《信息时代的生产技术》形考作业1-3终考答案
- 供应商合规声明书标准格式范本
评论
0/150
提交评论