




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省福州市八县一中2025届高一数学第二学期期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则()A.-1 B. C.-1或 D.或2.已知函数,则下列结论不正确的是()A.是的一个周期 B.C.的值域为R D.的图象关于点对称3.已知等差数列an的前n项和为Sn,若S1=1,A.32 B.54 C.4.已知点,则向量在方向上的投影为()A. B. C. D.5.若,则下列不等式成立的是()A. B.C. D.6.若函数f(x)=loga(x2–ax+2)在区间(0,1]上单调递减,则实数a的取值范围是()A.[2,3) B.(2,3) C.[2,+∞) D.(2,+∞)7.当前,我省正分批修建经济适用房以解决低收入家庭住房紧张问题.已知甲、乙、丙三个社区现分别有低收入家庭360户、270户、180户,若第一批经济适用房中有90套住房用于解决这三个社区中90户低收入家庭的住房问题,先采用分层抽样的方法决定各社区户数,则应从乙社区中抽取低收入家庭的户数为()A.30 B.40 C.20 D.368.设的内角所对边分别为.则该三角形()A.无解 B.有一解 C.有两解 D.不能确定9.如图,PA垂直于以AB为直径的圆所在平面,C为圆上异于A,B的任意一点,垂足为E,点F是PB上一点,则下列判断中不正确的是()﹒A.平面PAC B. C. D.平面平面PBC10.某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为()A.30 B.25 C.20 D.15二、填空题:本大题共6小题,每小题5分,共30分。11.如图,在水平放置的边长为1的正方形中随机撤1000粒豆子,有400粒落到心形阴影部分上,据此估计心形阴影部分的面积为_________.12.如果奇函数f(x)在[3,7]上是增函数且最小值是5,那么f(x)在[-7,-3]上是_________.①减函数且最小值是-5;②减函数且最大值是-5;③增函数且最小值是-5;④增函数且最大值是-513.函数f(x)=sin22x的最小正周期是__________.14.已知无穷等比数列的首项为,公比为q,且,则首项的取值范围是________.15.数列中,若,,则______;16.已知正方体中,,分别为,的中点,那么异面直线与所成角的余弦值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,在直三棱柱中,,,M、N分别为、的中点.求证:平面;求证:平面.18.已知,,其中.(1)求的值;(2)求的值.19.已知向量,,且,.(1)求函数和的解析式;(2)求函数的递增区间;(3)若函数的最小值为,求λ值.20.中,角的对边分别为,且.(I)求角的大小;(II)若,求的最小值.21.如图,在三棱柱中,平面平面,,,为棱的中点.(1)证明:;(2)求三棱柱的高.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
将已知等式平方,可根据二倍角公式、诱导公式和同角三角函数平方关系将等式化为,解方程可求得结果.【详解】由得:即,解得:或本题正确选项:【点睛】本题考查三角函数值的求解问题,关键是能够通过平方运算,将等式化简为关于的方程,涉及到二倍角公式、诱导公式和同角三角函数平方关系的应用.2、B【解析】
利用正切函数的图像和性质对每一个选项逐一分析得解.【详解】A.的最小正周期为,所以是的一个周期,所以该选项正确;B.所以该选项是错误的;C.的值域为R,所以该选项是正确的;D.的图象关于点对称,所以该选项是正确的.故选B【点睛】本题主要考查正切函数的图像和性质,意在考查学生对该知识的理解掌握水平,属于基础题.3、C【解析】
利用前n项和Sn的性质可求S【详解】设Sna+b=116a+4b=16a+8b,故a=1b=0,故S6【点睛】一般地,如果an为等差数列,Sn为其前(1)若m,n,p,q∈N*,m+n=p+q,则am(2)Sn=n(3)Sn=An(4)Sn4、A【解析】
,,向量在方向上的投影为,故选A.5、B【解析】
利用不等式的性质,进行判断即可.【详解】因为,故由均值不等式可知:;因为,故;因为,故;综上所述:.故选:B.【点睛】本题考查均值不等式及利用不等式性质比较大小.6、A【解析】
函数为函数与的复合函数,复合函数的单调性是同则增,异则减,讨论,,结合二次函数的单调性,同时还要保证真数恒大于零,由二次函数的图象和性质列不等式即可求得的范围.【详解】∵函数在区间上为单调递减函数,∴时,在上为单调递减函数,且在上恒成立,∴需在上的最小值,且对称轴,∴,当时,在上为单调递增函数,不成立,综上可得的范围是,故选:A.【点睛】本题考查了对数函数的图象和性质,二次函数图象和性质,复合函数的定义域与单调性,不等式恒成立问题的解法,转化化归的思想方法,属于中档题.7、A【解析】
先求出每个个体被抽到的概率,再由乙社区的低收入家庭数量乘以每个个体被抽到的概率,即可求解【详解】每个个体被抽到的概率为,乙社区由270户低收入家庭,故应从乙中抽取低收入家庭的户数为,故选:A【点睛】本题考查分层抽样的应用,属于基础题8、C【解析】
利用正弦定理以及大边对大角定理求出角,从而判断出该三角形解的个数.【详解】由正弦定理得,所以,,,,或,因此,该三角形有两解,故选C.【点睛】本题考查三角形解的个数的判断,解题时可以充分利用解的个数的等价条件来进行判断,具体来讲,在中,给定、、,该三角形解的个数判断如下:(1)为直角或钝角,,一解;,无解;(2)为锐角,或,一解;,两解;,无解.9、C【解析】
根据线面垂直的性质及判定,可判断ABC选项,由面面垂直的判定可判断D.【详解】对于A,PA垂直于以AB为直径的圆所在平面,而底面圆面,则,又由圆的性质可知,且,则平面PAC.所以A正确;对于B,由A可知,由题意可知,且,所以平面,而平面,所以,所以B正确;对于C,由B可知平面,因而与平面不垂直,所以不成立,所以C错误.对于D,由A、B可知,平面PAC,平面,由面面垂直的性质可得平面平面PBC.所以D正确;综上可知,C为错误选项.故选:C.【点睛】本题考查了线面垂直的性质及判定,面面垂直的判定定理,属于基础题.10、C【解析】
抽取比例为,,抽取数量为20,故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、0.4【解析】
根据几何概型的计算,反求阴影部分的面积即可.【详解】设阴影部分的面积为,根据几何概型的概率计算公式:,解得.故答案为:.【点睛】本题考查几何概型的概率计算公式,属基础题.12、④【解析】
由题意结合奇函数的对称性和所给函数的性质即可求得最终结果.【详解】奇函数的函数图象关于坐标原点中心对称,则若奇函数f(x)在区间[3,7]上是增函数且最小值为1,那么f(x)在区间[﹣7,﹣3]上是增函数且最大值为﹣1.故答案为:④.【点睛】本题考查了奇函数的性质,函数的对称性及其应用等,重点考查学生对基础概念的理解和计算能力,属于中等题.13、.【解析】
将所给的函数利用降幂公式进行恒等变形,然后求解其最小正周期即可.【详解】函数,周期为【点睛】本题主要考查二倍角的三角函数公式、三角函数的最小正周期公式,属于基础题.14、【解析】
根据极限存在得出,对分、和三种情况讨论得出与之间的关系,可得出的取值范围.【详解】由于,则.①当时,则,;②当时,则,;③当时,,解得.综上所述:首项的取值范围是,故答案为:.【点睛】本题考查极限的应用,要结合极限的定义得出公比的取值范围,同时要对公比的取值范围进行分类讨论,考查分类讨论思想的应用,属于中等题.15、【解析】
先分组求和得,再根据极限定义得结果.【详解】因为,,……,,所以则.【点睛】本题考查分组求和法、等比数列求和、以及数列极限,考查基本求解能力.16、【解析】
异面直线所成角,一般平移到同一个平面求解.【详解】连接DF,异面直线与所成角等于【点睛】异面直线所成角,一般平移到同一个平面求解.不能平移时通常考虑建系,利用向量解决问题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析.【解析】
(1)推导出,从而平面,进而,再由,,得是正方形,由此能证明平面.取的中点F,连BF、推导出四边形BMNF是平行四边形,从而,由此能证明平面.【详解】证明:在直三棱柱中,侧面底面ABC,且侧面底面,,即,平面,平面,,,是正方形,,平面取的中点F,连BF、在中,N、F是中点,,,又,,,,故四边形BMNF是平行四边形,,而面,平面,平面【点睛】本题考查线面垂直、线面平行的证明,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题.18、(1)(2)【解析】
(1)根据题意,由,求解,注意角的范围,可求得值,再根据运用两角和正切公式,即可求解;(2)由题意,配凑组合角,运用两角差余弦公式,即可求解.【详解】(1)∵,∴,∵,∴,∴,,(2)∵,∴,,∵,,∴,,∴.【点睛】本题考查三角恒等变换中的由弦求切、两角和正切公式、两角差余弦公式,考查配凑组合角,考查计算能力,属于基础题.19、(1),(2)递增区间为,(3)【解析】
(1)根据向量的数量积坐标运算,以及模长的求解公式,即可求得两个函数的解析式;(2)由(1)可得,整理化简后,将其转化为余弦型三角函数,再求单调区间即可;(3)求得的解析式,用换元法,将函数转化为二次函数,讨论二次函数的最小值,从而求得参数的值.【详解】(1),.(2)令,得的递增区间为,.(3)∵,∴..当时,时,取最小值为-1,这与题设矛盾.当时,时,取最小值,因此,,解得.当时,时,取最小值,由,解得,与题设矛盾.综上所述,.【点睛】本题主要考查余弦型三角函数的单调区间的求解,含的二次型函数的最值问题,涉及向量数量积的运算,模长的求解,以及二次函数动轴定区间问题,属综合基础题.20、(I);(II)最小值为2.【解析】
(I),化简即得C的值;(II)【详解】(I)因为,所以;(II)由余弦定理可得,,因为,所以,当且仅当的最小值为2.【点睛】本题主要考查正弦定理余弦定理解三角形和基本不等式,意在考查学生对这些知识的理解掌握水平和分析推理能力.21、(1)证明见解析(2)【解析】
(1)连接,,作为棱的中点,连结,,由平面平面,得到平面,则,再由,即可证明平面,从而得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025国内技术转让合同的范本
- 2025招标采购合同管理考点之合同谈判技巧要求
- 2025石油购销合同范本2
- 2025成都写字楼租赁合同范本
- 2025关于设备租赁承包合同范本
- 2025年的设备安装合同范本
- 2025标准办公室租赁合同协议
- 2025年上海市宽带互联网接入服务合同
- 《统计与分析方法》课件
- 2025上海市企业单位劳动合同
- 氨吹脱塔单元设计示例
- 中国移动-安全-L3
- 骨龄评测方法课件
- GB/T 42314-2023电化学储能电站危险源辨识技术导则
- 人教小学数学五年级下册综合与实践《怎样通知最快》示范公开课教学课件
- 海陆热力性质差异的说课课件
- 科学院大学博士入学复试汇报个人介绍PPT模板
- 四川省税务局财行处土增税清算复审指导口径(2021年6月22日)
- 迎春杯2023年-2023年中高年级初赛复赛试题真题整理
- GB/T 6322-1986光滑极限量规型式和尺寸
- GB/T 31052.5-2015起重机械检查与维护规程第5部分:桥式和门式起重机
评论
0/150
提交评论