四川省泸州外国语学校2025届高一下数学期末质量检测模拟试题含解析_第1页
四川省泸州外国语学校2025届高一下数学期末质量检测模拟试题含解析_第2页
四川省泸州外国语学校2025届高一下数学期末质量检测模拟试题含解析_第3页
四川省泸州外国语学校2025届高一下数学期末质量检测模拟试题含解析_第4页
四川省泸州外国语学校2025届高一下数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省泸州外国语学校2025届高一下数学期末质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在等差数列中,已知,数列的前5项的和为,则()A. B. C. D.2.如图,为正方体,下面结论错误的是()A.异面直线与所成的角为45° B.平面C.平面平面 D.异面直线与所成的角为45°3.将函数y=2sinx+π3sinA.π6 B.π12 C.π4.下列关于极限的计算,错误的是()A.B.C.D.已知,则5.已知是不共线的非零向量,,,,则四边形是()A.梯形 B.平行四边形 C.矩形 D.菱形6.函数(其中)的图象如图所示,为了得到的图象,则只要将的图象()A.向右平移 B.向右平移C.向左平移 D.向左平移7.直线:与圆的位置关系为()A.相离 B.相切 C.相交 D.无法确定8.若将函数的图象向右平移个单位后,所得图象对应的函数为()A. B. C. D.9.已知平面向量,的夹角为,,,则向的值为()A.-2 B. C.4 D.10.已知向量,,若,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,正方体ABCD﹣A1B1C1D1的棱长为1,M为B1C1中点,连接A1B,D1M,则异面直线A1B和D1M所成角的余弦值为________________________.12.数列的前项和为,若数列的各项按如下规律排列:,,,,,,,,,,…,,,…,,…有如下运算和结论:①;②数列,,,,…是等比数列;③数列,,,,…的前项和为;④若存在正整数,使,,则.其中正确的结论是_____.(将你认为正确的结论序号都填上)13.方程的解集是____________.14.已知,,则________.15.如图,在内有一系列的正方形,它们的边长依次为,若,,则所有正方形的面积的和为___________.16.在三棱锥P-ABC中,平面PAB⊥平面ABC,ΔABC是边长为23的等边三角形,其中PA=PB=三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设向量,,其中,,且.(1)求实数的值;(2)若,且,求的值.18.在中,角所对的边分别为,,,,为的中点.(1)求的长;(2)求的值.19.已知.(1)设,求满足的实数的值;(2)若为上的奇函数,试求函数的反函数.20.已知为锐角三角形,内角A,B,C的对边分别为a,b,c,若.(1)求C;(2)若,且的面积为,求的周长.21.已知定义域为的函数在上有最大值1,设.(1)求的值;(2)若不等式在上恒成立,求实数的取值范围;(3)若函数有三个不同的零点,求实数的取值范围(为自然对数的底数).

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

由,可求出,结合,可求出及.【详解】设数列的前项和为,公差为,因为,所以,则,故.故选C.【点睛】本题考查了等差数列的前项和,考查了等差数列的通项公式,考查了计算能力,属于基础题.2、A【解析】

根据正方体性质,依次证明线面平行和面面平行,根据直线的平行关系求异面直线的夹角.【详解】根据正方体性质,,所以异面直线与所成的角等于,,,所以不等于45°,所以A选项说法不正确;,四边形为平行四边形,,平面,平面,所以平面,所以B选项说法正确;同理可证:平面,是平面内两条相交直线,所以平面平面,所以C选项说法正确;,异面直线与所成的角等于,所以D选项说法正确.故选:A【点睛】此题考查线面平行和面面平行的判定,根据平行关系求异面直线的夹角,考查空间线线平行和线面平行关系的掌握3、B【解析】

由诱导公式将函数化简成y=sin(2x+2π3)【详解】∵(x+π∴sin∴y=2sinx+πy=sin∵平移后的函数恰为偶函数,∴x=0为其对称轴,∴x=0时,y=±1,∴-2φ+2π3=kπ+∵φ>0,∴k=0时,φmin【点睛】通过恒等变换把函数变成y=Asin(ωx+φ)(ω>0)的形式,再研究三角函数的性质是三角函数题常见解题思路;三角函数若为偶函数,则该条件可转化为直线x=0为其中一条对称轴,从而在4、B【解析】

先计算每个极限,再判断,如果是数列和的极限还需先求和,再求极限.【详解】,A正确;∵,∴,B错;,C正确;若,需按奇数项和偶数项分别求和后再极限,即,D正确.故选:B.【点睛】本题考查数列的极限,掌握极限运算法则是解题基础.在求数列前n项和的极限时,需先求出数列的前n项和,再对和求极限,不能对每一项求极限再相加.5、A【解析】

本题首先可以根据向量的运算得出,然后根据以及向量平行的相关性质即可得出四边形的形状.【详解】因为,所以,因为,是不共线的非零向量,所以且,所以四边形是梯形,故选A.【点睛】本题考查根据向量的相关性质来判断四边形的形状,考查向量的运算以及向量平行的相关性质,如果一组对边平行且不相等,那么四边形是梯形;如果对边平行且相等,那么四边形是平行四边形;相邻两边长度相等的平行四边形是菱形;相邻两边垂直的平行四边形是矩形,是简单题.6、A【解析】

利用函数的图像可得,从而可求出,再利用特殊点求出,进而求出三角函数的解析式,再利用三角函数图像的变换即可求解.【详解】由图可知,所以,当时,,由于,解得:,所以,要得到的图像,则需要将的图像向右平移.故选:A【点睛】本题考查了由图像求解析式以及三角函数的图像变换,需掌握三角函数图像变换的原则,属于基础题.7、C【解析】

求出圆的圆心坐标和半径,然后运用点到直线距离求出的值和半径进行比较,判定出直线与圆的关系.【详解】因为圆,所以圆心,半径,所以圆心到直线的距离为,则直线与圆相交.故选【点睛】本题考查了直线与圆的位置关系,运用点到直线的距离公式求出和半径比较,得到直线与圆的位置关系.8、B【解析】

根据正弦型函数的图象平移规律计算即可.【详解】.故选:B.【点睛】本题考查三角函数图象的平移变化,考查对基本知识的理解和掌握,属于基础题.9、C【解析】

通过已知条件,利用向量的数量积化简求解即可.【详解】平面向量,的夹角为,或,则向量.故选:【点睛】本题考查向量数量积公式,属于基础题.10、B【解析】

∵,∴.∴,即,∴,,故选B.【考点定位】向量的坐标运算二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】

连接、,取的中点,连接,可知,且是以为腰的等腰三角形,然后利用锐角三角函数可求出的值作为所求的答案.【详解】如下图所示:连接、,取的中点,连接,在正方体中,,则四边形为平行四边形,所以,则异面直线和所成的角为或其补角,易知,由勾股定理可得,,为的中点,则,在中,,因此,异面直线和所成角的余弦值为,故答案为.【点睛】本题考查异面直线所成角的余弦值的计算,求解异面直线所成的角一般利用平移直线法求解,遵循“一作、二证、三计算”,在计算时,一般利用锐角三角函数的定义或余弦定理求解,考查计算能力,属于中等题.12、①③④【解析】

根据题中所给的条件,将数列的项逐个写出,可以求得,将数列的各项求出,可以发现其为等差数列,故不是等比数列,利用求和公式求得结果,结合条件,去挖掘条件,最后得到正确的结果.【详解】对于①,前24项构成的数列是,所以,故①正确;对于②,数列是,可知其为等差数列,不是等比数列,故②不正确;对于③,由上边结论可知是以为首项,以为公比的等比数列,所以有,故③正确;对于④,由③知,即,解得,且,故④正确;故答案是①③④.【点睛】该题考查的是有关数列的性质以及对应量的运算,解题的思想是观察数列的通项公式,理解项与和的关系,认真分析,仔细求解,从而求得结果.13、【解析】

由方程可得或,然后分别解出规定范围内的解即可.【详解】因为所以或由得或因为,所以由得因为,所以综上:解集是故答案为:【点睛】方程的等价转化为或,不要把遗漏了.14、【解析】

由二倍角求得α,则tanα可求.【详解】由sin2α=sinα,得2sinαcosα=sinα,∵,∴sinα≠0,则,即.∴.故答案为:.【点睛】本题考查三角函数的恒等变换及化简求值,考查公式的灵活应用,属于基础题.15、【解析】

根据题意可知,可得,依次计算,,不难发现:边长依次为,,,,构成是公比为的等比数列,正方形的面积:依次,,不难发现:边长依次为,,,,正方形的面积构成是公比为的等比数列.利用无穷等比数列的和公式可得所有正方形的面积的和.【详解】根据题意可知,可得,依次计算,,是公比为的等比数列,正方形的面积:依次,,边长依次为,,,,正方形的面积构成是公比为的等比数列.所有正方形的面积的和.故答案为:【点睛】本题考查了无穷等比数列的和公式的运用.利用边长关系建立等式,找到公比是解题的关键.属于中档题.16、65π【解析】

本题首先可以通过题意画出图像,然后通过三棱锥的图像性质以及三棱锥的外接球的相关性质来确定圆心的位置,最后根据各边所满足的几何关系列出算式,即可得出结果。【详解】如图所示,作AB中点D,连接PD、CD,在CD上作三角形ABC的中心E,过点E作平面ABC的垂线,在垂线上取一点O,使得PO=OC。因为三棱锥底面是一个边长为23的等边三角形,E所以三棱锥的外接球的球心在过点E的平面ABC的垂线上,因为PO=OC,P、C两点在三棱锥的外接球的球面上,所以O点即为球心,因为平面PAB⊥平面ABC,PA=PB,D为AB中点,所以PD⊥平面ABCCD=CA2-ADPD=P设球的半径为r,则有PO=OC=r,OE=r(PD-OE)2+DE2=P故表面积为S=4πr【点睛】本题考查三棱锥的相关性质,主要考查三棱锥的外接球的相关性质,考查如何通过三棱锥的几何特征来确定三棱锥的外接球与半径,考查推理能力,考查化归与转化思想,是难题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)利用向量模的坐标求法可得,再利用同角三角函数的基本关系即可求解.(2)根据向量数量积的坐标表示以及两角差的余弦公式的逆应用可得,进而求出,根据同角三角函数的基本关系即可求解.【详解】(1)由知所以.又因为,所以.因为,所以,所以.又因为,所以.(2)由(1)知.由,得,即.因为,所以,所以.所以,因此.【点睛】本题考查了向量数量积的坐标表示、两角差的余弦公式以及同角三角函数的基本关系,属于基础题.18、(1).(2)【解析】

(1)在中分别利用余弦定理完成求解;(2)在中利用正弦定理求解的值.【详解】解:(1)在中,由余弦定理得,∴,解得∵为的中点,∴.在中,由余弦定理得,∴.(2)在中,由正弦定理得,∴.【点睛】本题考查解三角形中的正余弦定理的运用,难度较易.对于给定图形的解三角形问题,一定要注意去结合图形去分析.19、(1);(2).【解析】

(1)把代入函数解析式,代入方程即可求解.(2)由函数奇偶性得,然后求得的解析式,分段求解反函数即可.【详解】(1)当时,,由,得,即,解得.(2)为上的奇函数,,则.,由,,得,;由,,得,.函数的反函数为.【点睛】本题主要考查了函数的解析式及求法,考查了反函数的求法,属于中档题.20、(1);(2).【解析】

(1)根据正弦定理可求,利用特殊角三角函数可求C;(2)由和的面积公式,可求,再根据余弦定理求得解出a,b即可求的周长.【详解】(1)因为,所以由正弦定理得,又所以,又为锐角三角形,所以.(2)因为,所以由面积公式得,.又因为,所以由余弦定理得,,所以,或,,故的周长为.【点睛】本题考查正弦定理、余弦定理的应用,三角形面积公式在解三角形中的应用,属于基础题.21、(1)0;(2);(3)【解析】

(1)结合二次函数的性质可判断g(x)在[1,2]上的单调性,结合已知函数的最大值可求m;(2)由(1)可知f(x),由原不等式可知2k1在x∈[3,9]上恒成立,结合对数与二次函数的性质可求;(3)原方程可化为|ex﹣1|2﹣(3k+2)|ex﹣1|+(2k+1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论