版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届广东省广州市越秀区育才实验学校数学九上期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列说法正确的是()A.“清明时节雨纷纷”是必然事件B.要了解路边行人边步行边低头看手机的情况,可采取对在路边行走的学生随机发放问卷的方式进行调查C.做重复试验:抛掷同一枚瓶盖1000次,经过统计得“凸面向上”的频数为550次,则可以由此估计抛掷这枚瓶盖出现“凸面向上”的概率为0.55D.射击运动员甲、乙分别射击10次且击中环数的方差分别是0.5和1.2,则运动员甲的成绩较好2.附城二中到联安镇为5公里,某同学骑车到达,那么时间t与速度(平均速度)v之间的函数关系式是()A.v=5t B.v=t+5 C.v= D.v=3.如图,⊙O是△ABC的外接圆,若∠AOB=100°,则∠ACB的度数是()A.60° B.50° C.40° D.30°4.如图,把长40,宽30的矩形纸板剪掉2个小正方形和2个小矩形(阴影部分即剪掉部分),将剩余的部分折成一个有盖的长方体盒子,设剪掉的小正方形边长为(纸板的厚度忽略不计),若折成长方体盒子的表面积是950,则的值是()A.3 B.4 C.4.8 D.55.下列方程属于一元二次方程的是()A. B.C. D.6.下列事件中,是必然事件的是()A.随意翻倒一本书的某页,这页的页码是奇数. B.通常温度降到以下,纯净的水结冰.C.从地面发射一枚导弹,未击中空中目标. D.购买1张彩票,中奖.7.四条线段a,b,c,d成比例,其中b=3cm,c=8cm,d=12cm,则a=()A.2cm B.4cm C.6cm D.8cm8.将抛物线y=x2先向上平移1个单位,再向左平移2个单位,则新的函数解析式为().A. B. C. D.9.如图,⊙O的圆周角∠A=40°,则∠OBC的度数为()A.80° B.50° C.40° D.30°10.若2y-7x=0,则x∶y等于()A.2∶7 B.4∶7 C.7∶2 D.7∶4二、填空题(每小题3分,共24分)11.足球从地面踢出后,在空中飞行时离地面的高度与运动时间的关系可近似地表示为,则该足球在空中飞行的时间为__________.12.已知△ABC∽△A'B'C',S△ABC:S△A'B'C'=1:4,若AB=2,则A'B'的长为_____.13.从地面竖直向上抛出一小球,小球的高度h(米)与小球运动时间t(秒)的关系式是h=30t﹣5t2,小球运动中的最大高度是_____米.14.若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是㎝1.15.菱形有一个内角为60°,较短的对角线长为6,则它的面积为_____.16.找出如下图形变化的规律,则第100个图形中黑色正方形的数量是_____.17.如图,将一块三角板和半圆形量角器按图中方式叠放,三角板一边与量角器的零刻度线所在直线重合,重叠部分的量角器弧()对应的圆心角(∠AOB)为120°,OC的长为2cm,则三角板和量角器重叠部分的面积为_____.18.袋子中有10个除颜色外完全相同的小球在看不到球的条件下,随机地从袋中摸出一个球,记录颜色后放回,将球摇匀重复上述过程1500次后,共到红球300次,由此可以估计袋子中的红球个数是_____.三、解答题(共66分)19.(10分)如图,以为直径作半圆,点是半圆弧的中点,点是上的一个动点(点不与点、重合),交于点,延长、交于点,过点作,垂足为.(1)求证:是的切线;(2)若的半径为1,当点运动到的三等分点时,求的长.20.(6分)如图,已知A,B(-1,2)是一次函数与反比例函数()图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.21.(6分)近期江苏省各地均发布“雾霾”黄色预警,我市某口罩厂商生产一种新型口罩产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系满足下表.销售单价x(元/件)…20253040…每月销售量y(万件)…60504020…(1)请你从所学过的一次函数、二次函数和反比例函数三个模型中确定哪种函数能比较恰当地表示y与x的变化规律,并直接写出y与x之间的函数关系式为__________;(2)当销售单价为多少元时,厂商每月获得的利润为440万元?(3)如果厂商每月的制造成本不超过540万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?22.(8分)某商店代销一批季节性服装,每套代销成本40元,第一个月每套销售定价为52元时,可售出180套;应市场变化调整第一个月的销售价,预计销售定价每增加1元,销售量将减少10套.(1)若设第二个月的销售定价每套增加x元,填写下表.时间第一个月第二个月每套销售定价(元)销售量(套)(2)若商店预计要在这两个月的代销中获利4160元,则第二个月销售定价每套多少;(3)求当4≤x≤6时第二个月销售利润的最大值.23.(8分)阅读材料:小胖同学遇到这样一个问题,如图1,在△ABC中,∠ABC=45°,AB=2,AD=AE,∠DAE=90°,CE=,求CD的长;小胖经过思考后,在CD上取点F使得∠DEF=∠ADB(如图2),进而得到∠EFD=45°,试图构建“一线三等角”图形解决问题,于是他继续分析,又意外发现△CEF∽△CDE.(1)请按照小胖的思路完成这个题目的解答过程.(2)参考小胖的解题思路解决下面的问题:如图3,在△ABC中,∠ACB=∠DAC=∠ABC,AD=AE,∠EAD+∠EBD=90°,求BE:ED.24.(8分)如图,在平面直角坐标系中,四边形的顶点坐标分别为,,,.动点从点出发,以每秒个单位长度的速度沿边向终点运动;动点从点同时出发,以每秒1个单位长度的速度沿边向终点运动,设运动的时间为秒,.(1)直接写出关于的函数解析式及的取值范围:_______;(2)当时,求的值;(3)连接交于点,若双曲线经过点,问的值是否变化?若不变化,请求出的值;若变化,请说明理由.25.(10分)如图1,抛物线y=ax2+bx+c的顶点(0,5),且过点(﹣3,),先求抛物线的解析式,再解决下列问题:(应用)问题1,如图2,线段AB=d(定值),将其弯折成互相垂直的两段AC、CB后,设A、B两点的距离为x,由A、B、C三点组成图形面积为S,且S与x的函数关系如图所示(抛物线y=ax2+bx+c上MN之间的部分,M在x轴上):(1)填空:线段AB的长度d=;弯折后A、B两点的距离x的取值范围是;若S=3,则是否存在点C,将AB分成两段(填“能”或“不能”);若面积S=1.5时,点C将线段AB分成两段的长分别是;(2)填空:在如图1中,以原点O为圆心,A、B两点的距离x为半径的⊙O;画出点C分AB所得两段AC与CB的函数图象(线段);设圆心O到该函数图象的距离为h,则h=,该函数图象与⊙O的位置关系是.(提升)问题2,一个直角三角形斜边长为c(定值),设其面积为S,周长为x,证明S是x的二次函数,求该函数关系式,并求x的取值范围和相应S的取值范围.26.(10分)利用公式法解方程:x2﹣x﹣3=1.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据随机事件的概念、抽样调查的特点、方差的意义及概率公式分别判断可得.【详解】解:A、“清明时节雨纷纷”是随机事件,此选项错误;B、要了解路边行人边步行边低头看手机的情况,采取对在路边行走的学生随机发放问卷的方式进行调查不具代表性,此选项错误;C、做重复试验:抛掷同一枚瓶盖1000次,经过统计得“凸面向上”的频数为550次,则可以由此估计抛掷这枚瓶盖出现“凸面向上”的概率为0.55,正确;D、射击运动员甲、乙分别射击10次且击中环数的方差分别是0.5和1.2,则运动员甲的成绩较稳定,此选项错误;2、C【分析】根据速度=路程÷时间即可写出时间t与速度(平均速度)v之间的函数关系式.【详解】∵速度=路程÷时间,∴v=.故选C.【点睛】此题主要考查反比例函数的定义,解题的关键是熟知速度路程的公式.3、B【分析】直接利用圆周角定理可求得∠ACB的度数.【详解】∵⊙O是△ABC的外接圆,∠AOB=100°,
∴∠ACB=∠AOB=100°=50.
故选:B.【点睛】本题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角是所对的圆心角的一半.4、D【分析】观察图形可知阴影部分小长方形的长为,再根据去除阴影部分的面积为950,列一元二次方程求解即可.【详解】解:由图可得出,整理,得,解得,(不合题意,舍去).故选:D.【点睛】本题考查的知识点是一元二次方程的应用,根据图形找出阴影部分小长方形的长是解此题的关键.5、A【解析】本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为1.【详解】解:A、该方程符合一元二次方程的定义,符合题意;B、该方程属于二元二次方程,不符合题意;C、当a=1时,该方程不是一元二次方程,不符合题意;D、该方程不是整式方程,不是一元二次方程,不符合题意.故选:A.【点睛】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=1(且a≠1).特别要注意a≠1的条件.这是在做题过程中容易忽视的知识点.6、B【分析】根据必然事件的定义判断即可.【详解】A、C、D为随机事件,B为必然事件.故选B.【点睛】本题考查随机事件与必然事件的判断,关键在于熟记概念.7、A【解析】由四条线段a、b、c、d成比例,根据比例线段的定义,即可得,又由b=3cm,c=8cm,d=12cm,即可求得a的值.【详解】∵四条线段a、b、c、d成比例,∴∵b=3cm,c=8cm,d=12cm,
∴
解得:a=2cm.
故答案为A.【点睛】此题考查了比例线段的定义.解题的关键是熟记比例线段的概念.8、C【分析】由二次函数平移的规律即可求得答案.【详解】解:将抛物线y=x2先向上平移1个单位,则函数解析式变为y=x2+1,将y=x2+1向左平移2个单位,则函数解析式变为y=(x+2)2+1,故选:C.【点睛】本题主要考查二次函数的图象平移,掌握平移的规律是解题的关键,即“左加右减,上加下减”.9、B【分析】然后根据圆周角定理即可得到∠OBC的度数,由OB=OC,得到∠OBC=∠OCB,根据三角形内角和定理计算出∠OBC.【详解】∵∠A=40°.
∴∠BOC=80°,
∵OB=OC,
∴∠OBC=∠OCB=50°,
故选:B.【点睛】本题考查了圆周角定理:一条弧所对的圆周角是它所对的圆心角的一半;也考查了等腰三角形的性质以及三角形的内角和定理.10、A【分析】由2y-7x=0可得2y=7x,再根据等式的基本性质求解即可.【详解】解:∵2y-7x=0∴2y=7x∴x∶y=2∶7故选A.【点睛】比例的性质,根据等式的基本性质2进行计算即可,是基础题,比较简单.二、填空题(每小题3分,共24分)11、9.8【分析】求当t=0时函数值,即与x轴的两个交点,两个交点之间的距离即足球在空中飞行的时间.【详解】解:当t=0时,解得:∴足球在空中的飞行时间为9.8s故答案为:9.8【点睛】本题考查二次函数的实际应用,利用数形结合思想球解题,求抛物线与x轴的交点是本题的解题关键12、1【分析】由相似三角形的面积比得到相似比,再根据AB即可求得A'B'的长.【详解】解:∵△ABC∽△A'B'C',且S△ABC:S△A'B''C'=1:1,∴AB:A′B′=1:2,∵AB=2,∴A′B′=1.故答案为1.【点睛】此题考查相似三角形的性质,相似三角形的面积的比等于相似比的平方.13、1【分析】首先理解题意,先把实际问题转化成数学问题后,知道解此题就是求出h=30t﹣5t2的顶点坐标即可.【详解】解:h=﹣5t2+30t=﹣5(t2﹣6t+9)+1=﹣5(t﹣3)2+1,∵a=﹣5<0,∴图象的开口向下,有最大值,当t=3时,h最大值=1.故答案为:1.【点睛】本题考查了二次函数的应用,解此题的关键是把实际问题转化成数学问题,利用二次函数的性质就能求出结果.14、14【解析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.解:根据对角线的长可以求得菱形的面积,根据S=ab=×6×8=14cm1,故答案为14.15、18【分析】根据菱形对角线垂直且互相平分,且每条对角线平分它们的夹角,即可得出菱形的另一条对角线长,再利用菱形的面积公式求出即可.【详解】解:如图所示:∵菱形有一个内角为60°,较短的对角线长为6,∴设∠BAD=60°,BD=6,∵四边形ABCD是菱形,∴∠BAC=∠DAC=30°,DO=BO=3,∴AO==3,∴AC=6,则它的面积为:×6×6=18.故答案为:18.【点睛】本题考查菱形的性质,熟练掌握菱形的面积公式以及对角线之间的关系是解题关键.16、150个【分析】根据图形的变化寻找规律即可求解.【详解】观察图形的变化可知:当n为偶数时,第n个图形中黑色正方形的数量为(n+)个;当n为奇数时,第n个图形中黑色正方形的数量为(n+)个.所以第100个图形中黑色正方形的数量是150个.故答案为150个.【点睛】本题难度系数较大,需要根据观察得出奇偶数是不同情况,找出规律.17、.【分析】由图可知,三角板和量角器重叠部分的面积为扇形OAB的面积与△OBC面积的和,由此其解【详解】解:∵∠AOB=120°,∴∠BOC=60°.在Rt△OBC中,OC=2cm,∠BOC=60°,∴.∴.故答案为:18、2【分析】设袋子中红球有x个,求出摸到红球的频率,用频率去估计概率即可求出袋中红球约有多少个.【详解】设袋子中红球有x个,根据题意,得:,解得:x=2,所以袋中红球有2个,故答案为2【点睛】此题考查概率公式的应用,解题关键在于求出摸到红球的频率三、解答题(共66分)19、(1)详见解析;(2)或【分析】(1)连接,根据同弧所对的圆周角相等、直径所对的圆周角等于90°和等弧所对的弦相等可得:,,,从而证出≌,然后根据等腰三角形的性质即可求出∠ACF和∠ACO,从而求出∠OCF,即可证出结论;(2)先根据等腰直角三角形的性质求出AC、BC,再根据一个弧有两个三等分点分类讨论:情况一:当点为靠近点的三等分点时,根据三等分点即可求出,再根据锐角三角函数即可求出CE,从而求出AE;情况二:当点为靠近点的三等分点时,根据三等分点即可求出,从而求出AP,再推导出∠PDE=30°,设,用表示出DE、CE和AE的长,从而利用勾股定理列出方程即可求出,从而求出AE.【详解】(1)证明:连接∵为的直径∴∴根据同弧所对的圆周角相等可得,又∵是的中点∴∴在与中∴≌∴又∵∴平分∴∵,为的中点∴平分∴∴∴∴为的切线(2)证明:如图2∵的半径为1∴又∵,∴情况一:如图2当点为靠近点的三等分点时∵点是的三等分点∴∴在Rt△BCE中,∴情况二:如图3当点为靠近点的三等分点时∵点是的三等分点∴∴∴又∵∴又∵,∴∴∴∴设,则∴∴又∵∴即解出:或(应小于,故舍去)∴综上所述:或【点睛】此题考查的是圆的基本性质、圆周角定理、切线的判定、等腰三角形的性质和解直角三角形,掌握同弧所对的圆周角相等、直径所对的圆周角是90°、切线的判定定理和用勾股定理和锐角三角函数解直角三角形是解决此题的关键.20、(1)当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)一次函数的解析式为y=x+;m=﹣2;(3)P点坐标是(﹣,).【解析】试题分析:(1)根据一次函数图象在反比例函数图象上方的部分是不等式的解,观察图象,可得答案;(2)根据待定系数法,可得函数解析式以及m的值;(3)设P的坐标为(x,x+)如图,由A、B的坐标可知AC=,OC=4,BD=1,OD=2,易知△PCA的高为x+4,△PDB的高(2﹣x﹣),由△PCA和△PDB面积相等得,可得答案.试题解析:(1)由图象得一次函数图象在反比例函数图象上方时,﹣4<x<﹣1,所以当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)设一次函数的解析式为y=kx+b,y=kx+b的图象过点(﹣4,),(﹣1,2),则,解得一次函数的解析式为y=x+,反比例函数y=图象过点(﹣1,2),m=﹣1×2=﹣2;(3)连接PC、PD,如图,设P的坐标为(x,x+)如图,由A、B的坐标可知AC=,OC=4,BD=1,OD=2,易知△PCA的高为x+4,△PDB的高(2﹣x﹣),由△PCA和△PDB面积相等得××(x+4)=×|﹣1|×(2﹣x﹣),x=﹣,y=x+=,∴P点坐标是(﹣,).考点:反比例函数与一次函数的交点问题21、(1)y=﹣2x+100;(2)当销售单价为28元或1元时,厂商每月获得的利润为41万元;(3)当销售单价为35元时,厂商每月获得的利润最大,最大利润为510万元.【分析】(1)直接利用待定系数法求出一次函数解析式;(2)根据利润=销售量×(销售单价﹣成本),代入代数式求出函数关系式,令利润z=41,求出x的值;(3)根据厂商每月的制造成本不超过51万元,以及成本价18元,得出销售单价的取值范围,进而得出最大利润.【详解】解:(1)由表格中数据可得:y与x之间的函数关系式为:y=kx+b,把(20,60),(25,50)代入得:解得:故y与x之间的函数关系式为:y=﹣2x+100;(2)设总利润为z,由题意得,z=y(x﹣18)=(﹣2x+100)(x﹣18)=﹣2x2+136x﹣1800;当z=41时,﹣2x2+136x﹣1800=41,解得:x1=28,x2=1.答:当销售单价为28元或1元时,厂商每月获得的利润为41万元;(3)∵厂商每月的制造成本不超过51万元,每件制造成本为18元,∴每月的生产量为:小于等于=30万件,y=﹣2x+100≤30,解得:x≥35,∵z=﹣2x2+136x﹣1800=﹣2(x﹣34)2+512,∴图象开口向下,对称轴右侧z随x的增大而减小,∴x=35时,z最大为:510万元.当销售单价为35元时,厂商每月获得的利润最大,最大利润为510万元.【点睛】本题考查的是二次函数在实际生活中的应用,关键是根据题意求出二次函数的解析式以及利用增减性求出最值.22、(1)52;52+x;180;180-10x;(2)1元;(3)2240元【分析】(1)本题先设第二个月的销售定价每套增加x元,再分别求出销售量即可;
(2)本题先设第二个月的销售定价每套增加x元,根据题意找出等量关系列出方程,再把解得的x代入即可.(3)根据利润的表达式化为二次函数的顶点式,即可解答本题.【详解】解:(1)若设第二个月的销售定价每套增加x元,填写下表:时间第一个月第二个月销售定价(元)5252+x销售量(套)180180-10x故答案为:52;52+x;180;180-10x(2)若设第二个月的销售定价每套增加x元,根据题意得:
(52-40)×180+(52+x-40)(180-10x)=411,
解得:x1=-2(舍去),x2=8,
当x=-2时,52+x=50(舍去),
当x=8时,52+x=1.
答:第二个月销售定价每套应为1元.(3)设第二个月利润为y元.
由题意得到:y=(52+x-40)(180-10x)
=-10x2+1x+211
=-10(x-3)2+2250∵-10<0
∴当4≤x≤6时,y随x的增大而减小,∴当x=4时,y取最大值,此时y=2240,
∴52+x=52+4=56,
即要使第二个月利润达到最大,应定价为56元,此时第二个月的最大利润是2240元.【点睛】本题考查了二次函数的应用,解题的关键是明确题意,列出相应的关系式,找出所求问题需要的条件.23、CD=5;(1)见解析;(2)【分析】(1)在CD上取点F,使∠DEF=∠ADB,证明△ADB∽△DEF,求出DF=4,证明△CEF∽△CDE,由比例线段可求出CF=1,则CD可求出;(2)如图3,作∠DAT=∠BDE,作∠RAT=∠DAE,通过证明△DBE∽△ATD,可得,可得,通过证明△ARE≌△ATD,△ABR≌△ACT,可得BR=TC=DT,即可求解.【详解】解:(1)在CD上取点F,使∠DEF=∠ADB,∵AD=AE,∠DAE=90°,∴DE=AD=AE,∵∠ABC=45°,∠ADE=45°,且∠ADC=∠ADE+∠EDC,∴∠BAD=∠EDC,∵∠BDA=∠DEF,∴△ADB∽△DEF,∴=,∵AB=2,∴DF=4,又∵∠CDE+∠C=45°,∴∠CEF=∠CDE,∴△CEF∽△CDE,∴,又∵DF=4,CE=,∴,∴CF=1或CF=5(舍去),∴CD=CF+4=5;(2)如图3,作∠DAT=∠BDE,作∠RAT=∠DAE,∵∠ACB=∠DAC=∠ABC,∴AB=AC,AD=CD,∵AD=AE,∴∠AED=∠ADE,∵∠EAD+∠EBD=90°,∴∠EAD+2∠EBD=180°,且∠EAD+2∠AED=180°,∴∠EBD=∠AED=∠ADE,∵∠BDA=∠DAT+∠ATD=∠BDE+∠ADE,∴∠ADE=∠ATD=∠EBD,且∠BDE=∠DAT,∴△DBE∽△ATD,∴,∠ADT=∠BED,∴,且AD=DC,∴,∵∠RAT=∠DAE,∠ADE=∠ATD,∴∠RAE=∠DAT,∠AED=∠ART=∠ADE=∠ATD,∴AR=AT,且∠RAE=∠DAT,∠ARE=∠ATD,∴△ARE≌△ATD(ASA)∴∠ADT=∠AER,DT=ER,∴∠BED=∠AER,∴∠AED=∠BER=∠EBD,∴RE=RB=DT,∵AB=AC,∠ABC=∠ACB,∠ARB=∠ATC,∴△ABR≌△ACT(AAS)∴BR=TC,∴DT=TC,∴CD=2DT,∴=【点睛】本题主要考查相似三角形及全等三角形的判定及性质,作合适的辅助线对证明三角形相似起到关键作用.24、(1);(2),;(3)经过点的双曲线的值不变.值为.【分析】(1)过点P作PE⊥BC于点E,依题意求得P、Q的坐标,进而求得PE、EQ的长,再利用勾股定理即可求得答案,由时间=距离速度可求得t的取值范围;(2)当,即时,代入(1)求得的函数中,解方程即可求得答案;(3)过点作于点,求得OB的长,由,可求得,继而求得OD的长,利用三角函数即可求得点D的坐标,利用反比例函数图象上点的特征即可求得值.【详解】(1)过点P作PE⊥BC于点E,如图1:∵点B、C纵坐标相同,∴BC⊥y轴,∴四边形OPEC为矩形,∵运动的时间为秒,∴,在中,,,,∴,即,点Q运动的时间最多为:(秒),点P运动的时间最多为:(秒),∴关于的函数解析式及的取值范围为:;(2)当时,整理,得,解得:,.(3)经过点的双曲线的值不变.连接,交于点,过点作于点,如下图2所示.∵,,∴.∵,∴,∴,∴.∵,∴.在中,,,∴,,∴点的坐标为,∴经过点的双曲线的值为.【点睛】本题考查了二次函数的应用-动态几何问题,解直角三角形的应用,相似三角形的判定与性质,构造正确的辅助线是解题的关键.25、抛物线的解析式为:y=﹣x2+5;(2)20<x<2,不能,+和﹣;(2),相离或相切或相交;(3)相应S的取值范围为S>c2.【分析】将顶点(0,5)及点(﹣3,)代入抛物线的顶点式即可求出其解析式;(2)由抛物线的解析式先求出点M的坐标,由二次函数的图象及性质即可判断d的值,可由d的值判断出x的取值范围,分别将S=3和2.5代入抛物线解析式,即可求出点C将线段AB分成两段的长;(2)设AC=y,CB=x,可直接写出点C分AB所得两段AC与CB的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 培训期间的安全责任课件
- 培训专案总结报告
- 员工培训课件模板
- 口腔护士培训课件内容
- 肺动脉导管置入术总结2026
- 医院课件培训总结报道
- 化工经济与技术
- Unit 4 Life on Mars高频考点讲义 -译林版英语九年级下册
- 化妆礼仪培训课件
- 分腿前桥技术讲解
- 2025福建高中春季高考学业水平考试数学测试卷
- DZT0181-1997水文测井工作规范
- DB375026-2022《居住建筑节能设计标准》
- 【深信服】PT1-AF认证考试复习题库(含答案)
- 社会实践-形考任务四-国开(CQ)-参考资料
- 腰椎间盘突出患者术后护理课件
- 语文小学二年级上册期末培优试卷测试题(带答案)
- 医院护理培训课件:《高压氧临床的适应症》
- 中山大学研究生因公临时出国境申报表
- 腱鞘囊肿日间手术
- YY/T 0127.18-2016口腔医疗器械生物学评价第18部分:牙本质屏障细胞毒性试验
评论
0/150
提交评论