吉林省吉林市名校2025届九年级数学第一学期期末达标检测模拟试题含解析_第1页
吉林省吉林市名校2025届九年级数学第一学期期末达标检测模拟试题含解析_第2页
吉林省吉林市名校2025届九年级数学第一学期期末达标检测模拟试题含解析_第3页
吉林省吉林市名校2025届九年级数学第一学期期末达标检测模拟试题含解析_第4页
吉林省吉林市名校2025届九年级数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省吉林市名校2025届九年级数学第一学期期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.在平面直角坐标系xOy中,经过点(sin45°,cos30°)的直线,与以原点为圆心,2为半径的圆的位置关系是()A.相交 B.相切C.相离 D.以上三者都有可能2.已知二次函数,下列说法正确的是()A.该函数的图象的开口向下 B.该函数图象的顶点坐标是C.当时,随的增大而增大 D.该函数的图象与轴有两个不同的交点3.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC,若∠A=60°,∠ADC=85°,则∠C的度数是()A.25° B.27.5° C.30° D.35°4.如图,小明在打乒乓球时,为使球恰好能过网(设网高AB=15cm),且落在对方区域桌子底线C处,已知小明在自己桌子底线上方击球,则他击球点距离桌面的高度DE为()A.15cm B.20cm C.25cm D.30cm5.已知下列命题:①对角线互相平分的四边形是平行四边形;②内错角相等;③对角线互相垂直的四边形是菱形;④矩形的对角线相等,其中假命题有()A.个 B.个 C.个 D.个6.如图,⊙O外接于△ABC,AD为⊙O的直径,∠ABC=30°,则∠CAD=()A.30° B.40° C.50° D.60°7.下列说法中不正确的是()A.四边相等的四边形是菱形 B.对角线垂直的平行四边形是菱形C.菱形的对角线互相垂直且相等 D.菱形的邻边相等8.如图,小彬收集了三张除正面图案外完全相同的卡片,其中两张印有中国国际进口博览会的标志,另外一张印有进博会吉祥物“进宝”.现将三张卡片背面朝上放置,搅匀后从中一次性随机抽取两张,则抽到的两张卡片图案不相同的概率为()A. B. C. D.9.如果,那么锐角A的度数是()A.60° B.45° C.30° D.20°10.下列方程有两个相等的实数根是()A.x﹣x+3=0 B.x﹣3x+2=0 C.x﹣2x+1=0 D.x﹣4=0二、填空题(每小题3分,共24分)11.反比例函数y=的图象分布在第一、三象限内,则k的取值范围是______.12.如图是一个可以自由转动的转盘,转盘分成6个大小相同的扇形,颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).转动一次转盘后,指针指向_____颜色的可能性大.13.一元二次方程的根是_____.14.已知关于的方程的一个根为6,则实数的值为__________.15.如果关于的方程有两个相等的实数根,那么的值为________,此时方程的根为_______.16.如果点A(2,﹣4)与点B(6,﹣4)在抛物线y=ax2+bx+c(a≠0)上,那么该抛物线的对称轴为直线_____.17.计算的结果是_______.18.一元二次方程配方后得,则的值是__________.三、解答题(共66分)19.(10分)如图,菱形ABCD的顶点A,D在直线l上,∠BAD=60°,以点A为旋转中心将菱形ABCD顺时针旋转α(0°<α<30°),得到菱形AB′C′D′,B′C′交对角线AC于点M,C′D′交直线l于点N,连接MN,当MN∥B′D′时,解答下列问题:(1)求证:△AB′M≌△AD′N;(2)求α的大小.20.(6分)在平面直角坐标系中,将二次函数的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与轴交于点、(点在点的左侧),,经过点的一次函数的图象与轴正半轴交于点,且与抛物线的另一个交点为,的面积为1.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点在一次函数的图象下方,求面积的最大值,并求出此时点E的坐标;(3)若点为轴上任意一点,在(2)的结论下,求的最小值.21.(6分)如图,点E是弧BC的中点,点A在⊙O上,AE交BC于点D.(1)求证:;(2)连接OB,OC,若⊙O的半径为5,BC=8,求的面积.22.(8分)如图,在平面直角坐标系中,直线分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连结OE,动点P在AO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某点Q1向终点Q2匀速运动,它们同时到达终点.(1)求点B的坐标和OE的长;(2)设点Q2为(m,n),当tan∠EOF时,求点Q2的坐标;(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式.②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.23.(8分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,BE⊥AB,垂足为B,BE=CD连接CE,DE.(1)求证:四边形CDBE是矩形(2)若AC=2,∠ABC=30°,求DE的长24.(8分)如图,点是反比例函数图象上的一点,过点作轴于点,连接,的面积为1.点的坐标为.若一次函数的图象经过点,交双曲线的另一支于点,交轴点.(1)求反比例函数和一次函数的解析式;(1)若为轴上的一个动点,且的面积为5,请求出点的坐标.25.(10分)如图,的直径,半径,为上一动点(不包括两点),,垂足分别为.(1)求的长.(2)若点为的中点,①求劣弧的长度,②者点为直径上一动点,直接写出的最小值.26.(10分)如图,在平面直角坐标系中,点从点运动到点停止,连接,以长为直径作.(1)若,求的半径;(2)当与相切时,求的面积;(3)连接,在整个运动过程中,的面积是否为定值,如果是,请直接写出面积的定值,如果不是,请说明理由.

参考答案一、选择题(每小题3分,共30分)1、A【解析】试题分析:本题考查了直线和圆的位置关系,用到的知识点有特殊角的锐角三角函数值、勾股定理的运用,判定点A和圆的位置关系是解题关键.设直线经过的点为A,若点A在圆内则直线和圆一定相交;若点在圆上或圆外则直线和圆有可能相交或相切或相离,所以先要计算OA的长和半径2比较大小再做选择.设直线经过的点为A,∵点A的坐标为(sin45°,cos30°),∴OA==,∵圆的半径为2,∴OA<2,∴点A在圆内,∴直线和圆一定相交.故选A.考点:1.直线与圆的位置关系;2.坐标与图形性质;3.特殊角的三角函数值.2、D【分析】根据二次函数的性质解题.【详解】解:A、由于y=x2-4x-3中的a=1>0,所以该抛物线的开口方向是向上,故本选项不符合题意.

B、由y=x2-4x-3=(x-2)2-7知,该函数图象的顶点坐标是(2,-7),故本选项不符合题意.

C、由y=x2-4x-3=(x-2)2-7知,该抛物线的对称轴是x=2且抛物线开口方向向上,所以当x>2时,y随x的增大而增大,故本选项不符合题意.

D、由y=x2-4x-3知,△=(-4)2-4×1×(-3)=28>0,则该抛物线与x轴有两个不同的交点,故本选项符合题意.

故选:D.【点睛】考查了抛物线与x轴的交点,二次函数的性质,需要利用二次函数图象与系数的关系,二次函数图象与x轴交点的求法,配方法的应用等解答,难度不大.3、D【解析】分析:直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.详解:∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°故选D.点睛:此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.4、D【分析】证明△CAB∽△CDE,然后利用相似比得到DE的长.【详解】∵AB∥DE,∴△CAB∽△CDE,∴,而BC=BE,∴DE=2AB=2×15=30(cm).故选:D.【点睛】本题考查了相似三角形的应用,用相似三角形对应边的比相等的性质求物体的高度.5、B【分析】利用平行四边形的判定、平行线的性质、菱形的判定和矩形的性质分别对各命题进行判断即可.【详解】解:①根据平行四边形的判定定理可知,对角线互相平分的四边形是平行四边形,故①是真命题;②两直线平行,内错角相等,故②为假命题;③根据菱形的判定定理,对角线互相垂直且平分的四边形是菱形,故③是假命题;④根据矩形的性质,矩形的对角线相等,故④是真命题;故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是熟悉平行四边形的判定、平行线的性质、菱形的判定及矩形的性质,难度不大.6、D【分析】首先由∠ABC=30°,推出∠ADC=30°,然后根据AD为⊙O的直径,推出∠DCA=90°,最后根据直角三角形的性质即可推出∠CAD=90°-∠ADC,通过计算即可求出结果.【详解】解:∵∠ABC=30°,∴∠ADC=30°,∵AD是⊙O的直径,∴∠ACD=90°,∴∠CAD=90°-30°=60°.故选D.【点睛】本题主要考查圆周角定理,直角三角形的性质,角的计算,关键在于通过相关的性质定理推出∠ADC和∠DCA的度数.7、C【分析】根据菱形的判定与性质即可得出结论.【详解】解:A.四边相等的四边形是菱形;正确;

B.对角线垂直的平行四边形是菱形;正确;

C.菱形的对角线互相垂直且相等;不正确;

D.菱形的邻边相等;正确;

故选C.【点睛】本题考查了菱形的判定与性质以及平行四边形的性质;熟记菱形的性质和判定方法是解题的关键.8、D【分析】根据题意列出相应的表格,得到所有等可能出现的情况数,进而找出满足题意的情况数,即可求出所求的概率.【详解】设印有中国国际进口博览会的标志为“”,印有进博会吉祥物“进宝”为,由题列表为所有的等可能的情况共有种,抽到的两卡片图案不相同的等可能情况共有种,,故选:D.【点睛】本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.9、A【分析】根据特殊角的三角函数值即可求解.【详解】解:∵,∴锐角A的度数是60°,故选:A.【点睛】本题考查特殊角的三角函数值,掌握特殊角的三角函数值是解题的关键.10、C【分析】先根据方程求出△的值,再根据根的判别式的意义判断即可.【详解】A、x2﹣x+3=0,△=(﹣1)2﹣4×1×3=﹣11<0,所以方程没有实数根,故本选项不符合题意;B、x2﹣3x+2=0,△=(﹣3)2﹣4×1×2=1>0,所以方程有两个不相等的实数根,故本选项不符合题意;C、x2﹣2x+1=0,△=(﹣2)2﹣4×1×1=0,所以方程有两个相等的实数根,故本选项符合题意;D、x2﹣4=0,△=02﹣4×1×(﹣4)=16>0,所以方程有两个不相等的实数根,故本选项不符合题意;故选:C.【点睛】本题考查了根的判别式,能熟记根的判别式的意义是解此题的关键.二、填空题(每小题3分,共24分)11、k>0【详解】∵反比例函数的图象在一、三象限,∴k>0,12、红【解析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】本题考查了可能性大小的知识,解题的关键是看清那种颜色的最多,难度不大.13、【分析】利用因式分解法把方程化为x-3=0或x-2=0,然后解两个一次方程即可.【详解】解:或,所以.故答案为.【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.14、1【分析】将一元二次方程的根代入即可求出k的值.【详解】解:∵关于的方程的一个根为6∴解得:k=1故答案为:1.【点睛】此题考查的是已知一元二次方程的根,求方程中的参数,掌握方程的解的定义是解决此题的关键.15、1【分析】根据题意,讨论当k=0时,符合题意,当时,一元二次方程有两个相等的实数根即,据此代入系数,结合完全平方公式解题即可.【详解】当k=0,方程为一元一次方程,没有两个实数根,故关于的方程有两个相等的实数根,即即故答案为:1;.【点睛】本题考查一元二次方程根与系数的关系、完全平方公式等知识,是重要考点,难度较易,掌握相关知识是解题关键.16、x=4【解析】根据函数值相等的点到抛物线对称轴的距离相等,可由点A(1,-4)和点B(6,-4)都在抛物线y=ax²+bx+c的图象上,得到其对称轴为x==1.故答案为x=4.17、【分析】根据分式的加减运算法则,先通分,再加减.【详解】解:原式====.故答案为:.【点睛】本题考查了分式的加减运算,解题的关键是掌握运算法则和运算顺序.18、1【分析】将原方程进行配方,然后求解即可.【详解】解:∴-m+1=nm+n=1故答案为:1【点睛】本题考查配方法,掌握配方步骤正确计算是本题的解题关键.三、解答题(共66分)19、(1)见解析;(2)α=15°【分析】(1)利用四边形AB′C′D′是菱形,得到AB′=B′C′=C′D′=AD′,根据∠B′AD′=∠B′C′D′=60°,可得△AB′D′,△B′C′D′是等边三角形,进而得到△C′MN是等边三角形,则有C′M=C′N,MB′=ND′,利用SAS即可证明△AB′M≌△AD′N;(2)由(1)得∠B′AM=∠D′AN,利用∠CAD=∠BAD=30°,即可解决问题.【详解】(1)∵四边形AB′C′D′是菱形,∴AB′=B′C′=C′D′=AD′,∵∠B′AD′=∠B′C′D′=60°,∴△AB′D′,△B′C′D′是等边三角形,∵MN∥B′C′,∴∠C′MN=∠C′B′D′=60°,∠CNM=∠C′D′B′=60°,∴△C′MN是等边三角形,∴C′M=C′N,∴MB′=ND′,∵∠AB′M=∠AD′N=120°,AB′=AD′,∴△AB′M≌△AD′N(SAS),(2)由△AB′M≌△AD′N得:∠B′AM=∠D′AN,∵∠CAD=∠BAD=30°,∴∠D′AN=∠B′AM=15°,∴α=15°【点睛】本题考查旋转的性质,等边三角形的判定和性质,菱形的性质等知识,解题的关键是正确寻找全等三角形解决问题.20、(1);;(2)的面积最大值是,此时点坐标为;(2)的最小值是2.【分析】(1)先写出平移后的抛物线解析式,再把点代入可求得的值,由的面积为1可求出点的纵坐标,代入抛物线解析式可求出横坐标,由、的坐标可利用待定系数法求出一次函数解析式;(2)作轴交于,如图,利用三角形面积公式,由构建关于E点横坐标的二次函数,然后利用二次函数的性质即可解决问题;(2)作关于轴的对称点,过点作于点,交轴于点,则,利用锐角三角函数的定义可得出,此时最小,求出最小值即可.【详解】解:(1)将二次函数的图象向右平移1个单位,再向下平移2个单位,得到的抛物线解析式为,∵,∴点的坐标为,代入抛物线的解析式得,,∴,∴抛物线的解析式为,即.令,解得,,∴,∴,∵的面积为1,∴,∴,代入抛物线解析式得,,解得,,∴,设直线的解析式为,∴,解得:,∴直线的解析式为.(2)过点作轴交于,如图,设,则,∴,∴,,∴当时,的面积有最大值,最大值是,此时点坐标为.(2)作关于轴的对称点,连接交轴于点,过点作于点,交轴于点,∵,,∴,,∴,∵,∴,∴,∵、关于轴对称,∴,∴,此时最小,∵,,∴,∴.∴的最小值是2.【点睛】主要考查了二次函数的平移和待定系数法求函数的解析式、二次函数的性质、相似三角形的判定与性质、锐角三角函数的有关计算和利用对称的性质求最值问题.解(1)题的关键是熟练掌握待定系数法和相关点的坐标的求解;解(2)题的关键是灵活应用二次函数的性质求解;解(2)题的关键是作关于轴的对称点,灵活应用对称的性质和锐角三角函数的知识,学会利用数形结合的思想和转化的数学思想把求的最小值转化为求的长度.21、(1)见解析;(2)12【分析】(1)由点E是的中点根据圆周角定理可得∠BAE=∠CBE,又由∠E=∠E(公共角),即可证得△BDE∽△ABE,然后由相似三角形的对应边成比例,证得结论.(2)过点O作OF⊥BC于点F,根据垂径定理得出BF=CF=4,再根据勾股定理得出OF的长,从而求出的面积【详解】(1)证明:∵点E是弧BC的中点∴∠BAE=∠CBE=∠DBE又∵∠E=∠E∴△AEB∽△BED∴∴(2)过点O作OF⊥BC于点F,则BF=CF=4在中,∴【点睛】此题考查了圆周角定理、垂径定理以及相似三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.22、(1)(8,0),;(2)(6,1);(3)①,②的长为或.【分析】(1)令y=0,可得B的坐标,利用勾股定理可得BC的长,即可得到OE;(2)如图,作辅助线,证明△CDN∽△MEN,得CN=MN=1,计算EN的长,根据面积法可得OF的长,利用勾股定理得OF的长,由和,可得结论;(3)①先设s关于t成一次函数关系,设s=kt+b,根据当点P运动到AO中点时,点Q恰好与点C重合,得t=2时,CD=4,DQ3=2,s=,根据Q3(−4,6),Q2(6,1),可得t=4时,s=,利用待定系数法可得s关于t的函数表达式;②分三种情况:(i)当PQ∥OE时,根据,表示BH的长,根据AB=12,列方程可得t的值;(ii)当PQ∥OF时,根据tan∠HPQ=tan∠CDN=,列方程为2t−2=(7−t),可得t的值.(iii)由图形可知PQ不可能与EF平行.【详解】解:(1)令,则,∴,∴为.∵为,在中,.又∵为中点,∴.(2)如图,作于点,则,∴,∴,∴,∴.∵,∴,由勾股定理得,∴,∴.∵,∴,∴为.(3)①∵动点同时作匀速直线运动,∴关于成一次函数关系,设,将和代入得,解得,∴.②(ⅰ)当时,(如图),,作轴于点,则.∵,又∵,∴,∴,∴,∴.(ⅱ)当时(如图),过点作于点,过点作于点,由得.∵,∴,∴,∴.∵,∴,∴,∴.(ⅲ)由图形可知不可能与平行.综上所述,当与的一边平行时,的长为或.【点睛】此题是一次函数的综合题,主要考查了:用待定系数法求一次函数关系式,三角形相似的性质和判定,三角函数的定义,勾股定理,正方形的性质等知识,并注意运用分类讨论和数形结合的思想解决问题.23、(1)见详解,(2)DE=2【解析】(1)利用有一组对边平行且相等的四边形是平行四边形,有一个角是90°的平行四边形是矩形即可证明,(2)利用30°角所对直角边是斜边的一半和勾股定理即可解题.【详解】解:(1)∵CD⊥AB,BE⊥AB,∴CD∥BE,∵BE=CD,∴四边形CDBE是矩形,(2)在Rt△ABC中,∵∠ABC=30°,AC=2,∴AB=4,(30°角所对直角边是斜边的一半)∴DE=BC=2(勾股定理)【点睛】本题考查了矩形的证明和特殊直角三角形的性质,属于简单题,熟悉判定方法是解题关键.24、(1),;(1)P(0,5)或(0,1).【分析】(1)根据“点A是反比例函数图象上的一点,过点A作AB⊥x轴于点B,连接OA,△AOB的面积为1”即可求得k的值,从而得到反比例函数的解析式,分别将点A和点D的坐标代入反比例函数的解析式,即可求得点A和点D的坐标,用待定系数法求出a和b的值,即能求得一次函数的解析式,

(1)△PAC可以分成△PAD和△PCD,分别求出点A和点C到y轴的距离,根据“△PAC的面积为5”,求出PD的长度,结合点D的坐标,求出点P的坐标即可.【详解】解:(1)根据题意得:

k=-1×1=-4,

即反比例函数的解析式为,解得:

m=4,n=-1,

即点A(-1,4),点C(4,-1),

把点A(-1,4),C(4,-1)代入y=ax+b得:,解得:,即一次函数的解析式为:y=-x+3,

(1)把x=0代入y=-x+3得:y=3,

即点D(0,3),

点A到y轴的距离为1,点C到y轴的距离为4,

S△PAD=×PD×1=PD,

S△PCD=×PD×4=1PD,

S△PAC=S△PAD+S△PCD=PD=5,

PD=1,

∵点D(0,3),

∴点P的坐标为(0,1)或(0,5).【点睛】本题考查了反比例函数与一次函数的交点问题,根据题意和图示找出正确的等量关系式解决本题的关键.25、(1)(2)①②【分析】(1)求出圆的半径,再判断出四边形OFDE是矩形,然后根据矩形的对角线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论