版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A处看乙楼楼顶B处仰角为30°,则甲楼高度为()A.11米 B.(36﹣15)米 C.15米 D.(36﹣10)米2.如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M重合,点B、C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x的大致图象是()A. B. C. D.3.如图,在中,∠B=90°,AB=2,以B为圆心,AB为半径画弧,恰好经过AC的中点D,则弧AD与线段AD围成的弓形面积是()A. B. C. D.4.关于x的一元二次方程有两个实数根,则k的取值范围在数轴上可以表示为()A. B.C. D.5.如图,四边形是扇形的内接矩形,顶点P在弧上,且不与M,N重合,当P点在弧上移动时,矩形的形状、大小随之变化,则的长度()A.变大 B.变小 C.不变 D.不能确定6.下列方程是关于x的一元二次方程的是()A.ax2+bx+c=0 B.+x=2 C.x2+2x=x2﹣1 D.3x2+1=2x+27.菱形具有而矩形不具有的性质是()A.对角相等 B.四个角相等 C.对角线相等 D.四条边相等8.如图,PA、PB、分别切⊙O于A、B两点,∠P=40°,则∠C的度数为()A.40° B.140° C.70° D.80°9.如图,A,B,C,D为⊙O的四等分点,动点P从圆心O出发,沿O﹣C﹣D﹣O路线作匀速运动,设运动时间为t(s).∠APB=y(°),则下列图象中表示y与t之间函数关系最恰当的是()A. B.C. D.10.如图,在边长为1的正方形组成的网格中,△ABC的顶点都在格点上,将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为()A.10π B.C.π D.π11.二次函数y=﹣x2+2x﹣4,当﹣1<x<2时,y的取值范围是()A.﹣7<y<﹣4 B.﹣7<y≤﹣3 C.﹣7≤y<﹣3 D.﹣4<y≤﹣312.在△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,下列关系中错误的是()A.b=c•cosB B.b=a•tanB C.b=c•sinB D.a=b•tanA二、填空题(每题4分,共24分)13.一元二次方程x2﹣3x+2=0的两根为x1,x2,则x1+x2﹣x1x2=______.14.抛物线y=2(x﹣1)2﹣5的顶点坐标是_____.15.若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线的解析式是______.16.如图,线段AB=2,分别以A、B为圆心,以AB的长为半径作弧,两弧交于C、D两点,则阴影部分的面积为.17.一个4米高的电线杆的影长是6米,它临近的一个建筑物的影长是36米,则这个建筑物的高度是__________.18.将方程化为一元二次方程的一般形式,其中二次项系数为1,则一次项系数、常数项分别为____.三、解答题(共78分)19.(8分)如图,点D在⊙O的直径AB的延长线上,CD切⊙O于点C,AE⊥CD于点E(1)求证:AC平分∠DAE;(2)若AB=6,BD=2,求CE的长.20.(8分)如图,将矩形ABCD绕点C旋转得到矩形EFGC,点E在AD上.延长AD交FG于点H(1)求证:△EDC≌△HFE;(2)若∠BCE=60°,连接BE、CH.证明:四边形BEHC是菱形.21.(8分)超速行驶被称为“马路第一杀手”为了让驾驶员自觉遵守交通规则,湖浔大道公路检测中心在一事故多发地段安装了一个测速仪器,如图所示,已知检测点设在距离公路10米的A处,测得一辆汽车从B处行驶到C处所用时间为1.35秒.已知∠B=45°,∠C=30°.(1)求B,C之间的距离(结果保留根号);(2)如果此地限速为70km/h,那么这辆汽车是否超速?请说明理由.(参考数据;≈1.7,≈1.4)22.(10分)(1)已知a,b,c,d是成比例线段,其中a=2cm,b=3cm,d=6cm,求线段c的长;(2)已知,且a+b﹣5c=15,求c的值.23.(10分)某小型工厂9月份生产的、两种产品数量分别为200件和100件,、两种产品出厂单价之比为2:1,由于订单的增加,工厂提高了、两种产品的生产数量和出厂单价,10月份产品生产数量的增长率和产品出厂单价的增长率相等,产品生产数量的增长率是产品生产数量的增长率的一半,产品出厂单价的增长率是产品出厂单价的增长率的2倍,设产品生产数量的增长率为(),若10月份该工厂的总收入增加了,求的值.24.(10分)为了响应市政府号召,某校开展了“六城同创与我同行”活动周,活动周设置了“A:文明礼仪,B:生态环境,C:交通安全,D:卫生保洁”四个主题,每个学生选一个主题参与.为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如下条形统计图和扇形统计图.(1)本次随机调查的学生人数是______人;(2)请你补全条形统计图;(3)在扇形统计图中,“B”所在扇形的圆心角等于______度;(4)小明和小华各自随机参加其中的一个主题活动,请用画树状图或列表的方式求他们恰好选中同一个主题活动的概率.25.(12分)如图,在平面直角坐标系中,直线与x轴、y轴分别交于A、B两点,点P从点A出发,沿折线AB﹣BO向终点O运动,在AB上以每秒5个单位长度的速度运动,在BO上以每秒3个单位长度的速度运动;点Q从点O出发,沿OA方向以每秒个单位长度的速度运动.P,Q两点同时出发,当点P停止时,点Q也随之停止.过点P作PE⊥AO于点E,以PE,EQ为邻边作矩形PEQF,设矩形PEQF与△ABO重叠部分图形的面积为S,点P运动的时间为t秒.(1)连结PQ,当PQ与△ABO的一边平行时,求t的值;(2)求S与t之间的函数关系式,并直接写出自变量t的取值范围.26.下面是小东设计的“过圆外一点作这个圆的两条切线”的尺规作图过程.已知:⊙O及⊙O外一点P.求作:直线PA和直线PB,使PA切⊙O于点A,PB切⊙O于点B.作法:如图,①连接OP,分别以点O和点P为圆心,大于OP的同样长为半径作弧,两弧分别交于点M,N;②连接MN,交OP于点Q,再以点Q为圆心,OQ的长为半径作弧,交⊙O于点A和点B;③作直线PA和直线PB.所以直线PA和PB就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵OP是⊙Q的直径,∴∠OAP=∠OBP=________°()(填推理的依据).∴PA⊥OA,PB⊥OB.∵OA,OB为⊙O的半径,∴PA,PB是⊙O的切线.
参考答案一、选择题(每题4分,共48分)1、D【分析】分析题意可得:过点A作AE⊥BD,交BD于点E;可构造Rt△ABE,利用已知条件可求BE;而乙楼高AC=ED=BD﹣BE.【详解】解:过点A作AE⊥BD,交BD于点E,在Rt△ABE中,AE=30米,∠BAE=30°,∴BE=30×tan30°=10(米),∴AC=ED=BD﹣BE=(36﹣10)(米).∴甲楼高为(36﹣10)米.故选D.【点睛】此题主要考查三角函数的应用,解题的关键是熟知特殊角的三角函数值.2、A【解析】分析:在Rt△PMN中解题,要充分运用好垂直关系和45度角,因为此题也是点的移动问题,可知矩形ABCD以每秒1cm的速度由开始向右移动到停止,和Rt△PMN重叠部分的形状可分为下列三种情况,(1)0≤x≤2;(2)2<x≤4;(3)4<x≤6;根据重叠图形确定面积的求法,作出判断即可.详解:∵∠P=90°,PM=PN,∴∠PMN=∠PNM=45°,由题意得:CM=x,分三种情况:①当0≤x≤2时,如图1,边CD与PM交于点E,∵∠PMN=45°,∴△MEC是等腰直角三角形,此时矩形ABCD与△PMN重叠部分是△EMC,∴y=S△EMC=CM•CE=;故选项B和D不正确;②如图2,当D在边PN上时,过P作PF⊥MN于F,交AD于G,∵∠N=45°,CD=2,∴CN=CD=2,∴CM=6﹣2=4,即此时x=4,当2<x≤4时,如图3,矩形ABCD与△PMN重叠部分是四边形EMCD,过E作EF⊥MN于F,∴EF=MF=2,∴ED=CF=x﹣2,∴y=S梯形EMCD=CD•(DE+CM)==2x﹣2;③当4<x≤6时,如图4,矩形ABCD与△PMN重叠部分是五边形EMCGF,过E作EH⊥MN于H,∴EH=MH=2,DE=CH=x﹣2,∵MN=6,CM=x,∴CG=CN=6﹣x,∴DF=DG=2﹣(6﹣x)=x﹣4,∴y=S梯形EMCD﹣S△FDG=﹣=×2×(x﹣2+x)﹣=﹣+10x﹣18,故选项A正确;故选:A.点睛:此题是动点问题的函数图象,有难度,主要考查等腰直角三角形的性质和矩形的性质的应用、动点运动问题的路程表示,注意运用数形结合和分类讨论思想的应用.3、B【分析】如图(见解析),先根据圆的性质、直角三角形的性质可得,再根据等边三角形的判定与性质可得,然后根据直角三角形的性质、勾股定理可得,从而可得的面积,最后利用扇形BAD的面积减去的面积即可得.【详解】如图,连接BD,由题意得:,点D是斜边AC上的中点,,,是等边三角形,,,在中,,又是的中线,,则弧AD与线段AD围成的弓形面积为,故选:B.【点睛】本题考查了扇形的面积公式、等边三角形的判定与性质、直角三角形的性质、勾股定理等知识点,通过作辅助线,构造等边三角形和扇形是解题关键.4、B【分析】利用根的判别式和题意得到,求出不等式的解集,最后在数轴上表示出来,即可得出选项.【详解】解:∵关于x的方程有两个实数根,∴,解得:,在数轴上表示为:,故选:B.【点睛】本题考查了在数轴上表示不等式的解集,根的判别式的应用,注意:一元二次方程(为常数)的根的判别式为.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.特别注意:当时,方程有两个实数根,本题主要应用此知识点来解决.5、C【分析】四边形PAOB是扇形OMN的内接矩形,根据矩形的性质AB=OP=半径,所以AB长度不变.【详解】解:∵四边形PAOB是扇形OMN的内接矩形,
∴AB=OP=半径,
当P点在弧MN上移动时,半径一定,所以AB长度不变,
故选:C.【点睛】本题考查了圆的认识,矩形的性质,用到的知识点为:矩形的对角线相等;圆的半径相等.6、D【解析】试题分析:一元二次方程的一般式为:a+bx+c=0(a、b、c为常数,且a≠0),根据定义可得:A选项中a有可能为0,B选项中含有分式,C选项中经过化简后不含二次项,D为一元二次方程.考点:一元二次方程的定义7、D【分析】菱形和矩形都是平行四边形,具有平行四边形的所有性质,菱形还具有独特的性质:四边相等,对角线垂直;矩形具有独特的性质:对角线相等,邻边互相垂直.【详解】解答:解:A、对角相等,菱形和矩形都具有的性质,故A错误;B、四角相等,矩形的性质,菱形不具有的性质,故B错误;C、对角线相等是矩形具有而菱形不具有的性质,故C错误;D、四边相等,菱形的性质,矩形不具有的性质,故D正确;故选D.考点:菱形的性质;矩形的性质.8、C【分析】连接OA,OB根据切线的性质定理,切线垂直于过切点的半径,即可求得∠OAP,∠OBP的度数,根据四边形的内角和定理即可求的∠AOB的度数,然后根据圆周角定理即可求解.【详解】∵PA是圆的切线,∴同理根据四边形内角和定理可得:∴故选:C.【点睛】考查切线的性质以及圆周角定理,连接圆心与切点是解题的关键.9、C【解析】根据题意,分P在OC、CD、DO之间3个阶段,分别分析变化的趋势,又由点P作匀速运动,故图像都是线段,分析选项可得答案.【详解】根据题意,分3个阶段;①P在OC之间,∠APB逐渐减小,到C点时,∠APB为45°,所以图像是下降的线段,②P在弧CD之间,∠APB保持45°,大小不变,所以图像是水平的线段,③P在DO之间,∠APB逐渐增大,到O点时,∠APB为90°,所以图像是上升的线段,分析可得:C符合3个阶段的描述;故选C.【点睛】本题主要考查了函数图象与几何变换,解决此类问题,注意将过程分成几个阶段,依次分析各个阶段得变化情况,进而综合可得整体得变化情况.10、C【详解】如图所示:在Rt△ACD中,AD=3,DC=1,根据勾股定理得:AC=,又将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为l=.故选C.11、B【分析】先求出二次函数的对称轴,再根据二次函数的增减性求出最小值和最大值即可.【详解】解:∵y=﹣x2+2x﹣4,=﹣(x2﹣2x+4)=﹣(x﹣1)2﹣1,∴二次函数的对称轴为直线x=1,∴﹣1<x<2时,x=1取得最大值为﹣1,x=﹣1时取得最小值为﹣(﹣1)2+2×(﹣1)﹣4=﹣7,∴y的取值范围是﹣7<y≤﹣1.故选:B.【点睛】本题考查了二次函数与不等式,主要利用了二次函数的增减性和对称性,确定出对称轴从而判断出取得最大值和最小值的情况是解题的关键.12、A【分析】本题可以利用锐角三角函数的定义求解即可.【详解】解:在Rt△ABC中,∠C=90°,则tanA=,tanB=,cosB=,sinB=;因而b=c•sinB=a•tanB,a=b•tanA,错误的是b=c•cosB.故选:A.【点睛】本题考查三角函数的定义,熟记定义是解题的关键.二、填空题(每题4分,共24分)13、1【分析】利用根与系数的关系得到x1+x2=3,x1x2=2,然后利用整体代入的方法计算.【详解】解:根据题意得:x1+x2=3,x1x2=2,
所以x1+x2-x1x2=3-2=1.
故答案为:1.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-,x1x2=.14、(1,﹣5)【分析】根据二次函数的顶点式即可求解.【详解】解:抛物线y=2(x﹣1)2﹣5的顶点坐标是(1,﹣5).故答案为(1,﹣5).【点睛】本题考查了顶点式对应的顶点坐标,顶点式的理解是解题的关键15、【分析】先根据定弦抛物线的定义求出定弦抛物线的表达式,再按图象的平移规律平移即可.【详解】∵某定弦抛物线的对称轴为直线∴某定弦抛物线过点∴该定弦抛物线的解析式为将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线的解析式是即故答案为:.【点睛】本题主要考查二次函数图象的平移,能够求出定弦抛物线的表达式并掌握平移规律是解题的关键.16、【分析】利用扇形的面积公式等边三角形的性质解决问题即可.【详解】解:由题意可得,AD=BD=AB=AC=BC,∴△ABD和△ABC时等边三角形,∴阴影部分的面积为:故答案为﹣4.【点睛】考核知识点:扇形面积.熟记扇形面积是关键.17、1米【分析】设建筑物的高度为x,根据物高与影长的比相等,列方程求解.【详解】解:设建筑物的高度为x米,由题意得,
,解得x=1.故答案为:1米.【点睛】本题考查了相似三角形的应用,通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决.18、5,.【分析】一元二次方程化为一般形式后,找出一次项系数与常数项即可.【详解】解:方程整理得:,则一次项系数、常数项分别为5,;故答案为:5,.【点睛】此题考查了一元二次方程的一般形式,其一般形式为.三、解答题(共78分)19、(1)见解析;(2)125【解析】(1)连接OC.只要证明AE∥OC即可解决问题;(2)根据角平分线的性质定理可知CE=CF,利用面积法求出CF即可;【详解】(1)证明:连接OC.∵CD是⊙O的切线,∴∠OCD=90°,∵∠AEC=90°,∴∠OCD=∠AEC,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠OAC=∠OCA,∴∠EAC=∠OAC,∴AC平分∠DAE.(2)作CF⊥AB于F.在Rt△OCD中,∵OC=3,OD=5,∴CD=4,∵12•OC•CD=12•OD•∴CF=125∵AC平分∠DAE,CE⊥AE,CF⊥AD,∴CE=CF=125【点睛】本题主要考查平行线的判定、角平分线的性质,熟练掌握这些知识点是解答的关键.20、(1)见解析;(2)见解析.【解析】(1)依据题意可得到FE=AB=DC,∠F=∠EDC=90°,FH∥EC,利用平行线的性质可证明∠FHE=∠CED,然后依据AAS证明△EDC≌△HFE即可;
(2)首先证明四边形BEHC为平行四边形,再证明邻边BE=BC即可证明四边形BEHC是菱形.【详解】(1)证明:∵矩形FECG由矩形ABCD旋转得到,∴FE=AB=DC,∠F=∠EDC=90°,FH∥EC,∴∠FHE=∠CED.在△EDC和△HFE中,,∴△EDC≌△HFE(AAS);(2)∵△EDC≌△HFE,∴EH=EC.∵矩形FECG由矩形ABCD旋转得到,∴EH=EC=BC,EH∥BC,∴四边形BEHC为平行四边形.∵∠BCE=60°,EC=BC,∴△BCE是等边三角形,∴BE=BC,∴四边形BEHC是菱形.【点睛】本题主要考查的是旋转的性质、菱形的判定,熟练掌握相关图形的性质和判定定理是解题的关键.21、(1)BC=(10+10)m;(2)这辆汽车超速.理由见解析.【分析】(1)作AD⊥BC于D,则AD=10m,求出CD、BD即可解决问题;(2)求出汽车的速度,即可解决问题,注意统一单位.【详解】(1)如图作AD⊥BC于D,则AD=10m,在Rt△ABD中,∵∠B=45°,∴BD=AD=10m,在Rt△ACD中,∵∠C=30°,∴tan30°=,∴CD=AD=10m,∴BC=BD+DC=(10+10)m;(2)结论:这辆汽车超速.理由:∵BC=10+10≈27m,∴汽车速度==20m/s=72km/h,∵72km/h>70km/h,∴这辆汽车超速.【点睛】本题考查解直角三角形的应用,锐角三角函数、速度、时间、路程之间的关系等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.22、(1)1;(2)-1【分析】(1)根据比例线段的定义得到a:b=c:d,然后把a=2cm,b=3cm,d=6cm代入进行计算即可;
(2)设=k,得出a=2k,b=3k,c=1k,代入a+b-5c=15,求出k的值,从而得出c的值.【详解】(1)∵a,b,c,d是成比例线段
∴,
即,
∴c=1;
(2)设=k,则a=2k,b=3k,c=1k,
∵a+b-5c=15
∴2k+3k-20k=15
解得:k=-1
∴c=-1.【点睛】此题考查比例线段,解题关键是理解比例线段的概念,列出比例式,用到的知识点是比例的基本性质.23、5%【分析】根据题意,列出方程即可求出x的值.【详解】根据题意,得整理,得解这个方程,得,(不合题意,舍去)所以的值是5%.【点睛】此题考查的是一元二次方程的应
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工程生产例会制度
- 生产酸奶管理制度范本
- 高压釜安全生产管理制度
- 企业生产自查制度
- 煤矿生产科保密制度
- 光伏生产计划管理制度
- 饮水设备生产制度
- 2026上半年云南事业单位联考开放大学招聘管理人员1人备考考试试题附答案解析
- 2026上海交通大学医学院医学人工智能研究院招聘教学科研人员4人备考考试题库附答案解析
- 电站安全生产投入制度
- 《低碳医院评价指南》(T-SHWSHQ 14-2025)
- 马的文化介绍
- AI技术在人力资源管理中的实际应用案例分享
- 急诊预检分诊课件教学
- 2026届浙江省杭州城区6学校数学七年级第一学期期末教学质量检测试题含解析
- 2025年中国菜板市场调查研究报告
- 《杭州市建设工程消防验收技术导则》
- 钢结构防火涂料应用技术规程TCECS 24-2020
- 民事答辩状(信用卡纠纷)样式
- 桥梁施工现场文明施工方案
- 数字媒体艺术设计专业毕业设计任务书
评论
0/150
提交评论