2022年云南省玉溪市九年级数学第一学期期末复习检测模拟试题含解析_第1页
2022年云南省玉溪市九年级数学第一学期期末复习检测模拟试题含解析_第2页
2022年云南省玉溪市九年级数学第一学期期末复习检测模拟试题含解析_第3页
2022年云南省玉溪市九年级数学第一学期期末复习检测模拟试题含解析_第4页
2022年云南省玉溪市九年级数学第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.某水库大坝高米,背水坝的坡度为,则背水面的坡长为()A.40米 B.60米 C.米 D.米2.将抛物线向上平移两个单位长度,得到的抛物线解析式是()A. B.C. D.3.二次函数(m是常数),当时,,则m的取值范围为()A.m<0 B.m<1 C.0<m<1 D.m>14.如果,、分别对应、,且,那么下列等式一定成立的是()A. B.的面积:的面积C.的度数:的度数 D.的周长:的周长5.下列函数中是反比例函数的是()A. B. C. D.6.如图,在⊙O中,弦AB的长为8,圆心O到AB的距离为3,则⊙O的半径为()A.10 B.8 C.7 D.57.如图,BC是⊙O的弦,OA⊥BC,∠AOB=55°,则∠ADC的度数是()A.25° B.55° C.45° D.27.5°8.下列事件中,为必然事件的是()A.抛掷10枚质地均匀的硬币,5枚正面朝上B.某种彩票的中奖概率为,那么买100张这种彩票会有10张中奖C.抛掷一枚质地均匀的骰子,朝上一面的数字不大于6D.打开电视机,正在播放戏曲节目9.下列四个几何体中,主视图与俯视图不同的几何体是()A. B.C. D.10.已知P是△ABC的重心,且PE∥BC交AB于点E,BC=,则PE的长为().A. B. C. D.11.代数式有意义的条件是()A. B. C. D.12.如图,一张扇形纸片OAB,∠AOB=120°,OA=6,将这张扇形纸片折叠,使点A与点O重合,折痕为CD,则图中未重叠部分(即阴影部分)的面积为()A.9 B.12π﹣9 C. D.6π﹣二、填空题(每题4分,共24分)13.如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C,D分别落在边BC下方的点C′,D′处,且点C′,D′,B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为___(用含t的代数式表示).14.某日6时至10时,某交易平台上一种水果的每千克售价、每千克成本与交易时间之间的关系分别如图1、图2所示(图1、图2中的图象分别是线段和抛物线,其中点P是抛物线的顶点).在这段时间内,出售每千克这种水果收益最大的时刻是_____,此时每千克的收益是_________15.已知一条抛物线,以下说法:①对称轴为,当时,随的增大而增大;②;③顶点坐标为;④开口向上.其中正确的是______.(只填序号)16.如图,在菱形ABCD中,E,F分别是AD,BD的中点,若EF=2,则菱形ABCD的周长是__.17.分解因式:x3y﹣xy3=_____.18.已知函数(为常数),若从中任取值,则得到的函数是具有性质“随增加而减小”的一次函数的概率为___________.三、解答题(共78分)19.(8分)抛物线过点(0,-5)和(2,1).(1)求b,c的值;(2)当x为何值时,y有最大值?20.(8分)永农化工厂以每吨800元的价格购进一批化工原料,加工成化工产品进行销售,已知每1吨化工原料可以加工成化工产品0.8吨,该厂预计销售化工产品不超过50吨时每吨售价为1600元,超过50吨时,每超过1吨产品,销售所有的化工产品每吨价格均会降低4元,设该化工厂生产并销售了x吨化工产品.(1)用x的代数式表示该厂购进化工原料吨;(2)当x>50时,设该厂销售完化工产品的总利润为y,求y关于x的函数关系式;(3)如果要求总利润不低于38400元,那么该厂购进化工原料的吨数应该控制在什么范围?21.(8分)用适当的方法解下列一元二次方程:(1)2x2+4x-1=0;(2)(y+2)2-(3y-1)2=0.22.(10分)计算:|2﹣|+()﹣1+﹣2cos45°23.(10分)问题提出:如图1,在等边△ABC中,AB=9,⊙C半径为3,P为圆上一动点,连结AP,BP,求AP+BP的最小值(1)尝试解决:为了解决这个问题,下面给出一种解题思路,通过构造一对相似三角形,将BP转化为某一条线段长,具体方法如下:(请把下面的过程填写完整)如图2,连结CP,在CB上取点D,使CD=1,则有又∵∠PCD=∠△∽△∴∴PD=BP∴AP+BP=AP+PD∴当A,P,D三点共线时,AP+PD取到最小值请你完成余下的思考,并直接写出答案:AP+BP的最小值为.(2)自主探索:如图3,矩形ABCD中,BC=6,AB=8,P为矩形内部一点,且PB=1,则AP+PC的最小值为.(请在图3中添加相应的辅助线)(3)拓展延伸:如图1,在扇形COD中,O为圆心,∠COD=120°,OC=1.OA=2,OB=3,点P是上一点,求2PA+PB的最小值,画出示意图并写出求解过程.24.(10分)在平面直角坐标系中,对“隔离直线”给出如下定义:点是图形上的任意一点,点是图形上的任意一点,若存在直线:满足且,则称直线:是图形与的“隔离直线”,如图,直线:是函数的图像与正方形的一条“隔离直线”.

(1)在直线①,②,③,④中,是图函数的图像与正方形的“隔离直线”的为.(2)如图,第一象限的等腰直角三角形的两腰分别与坐标轴平行,直角顶点的坐标是,⊙O的半径为,是否存在与⊙O的“隔离直线”?若存在,求出此“隔离直线”的表达式:若不存在,请说明理由;(3)正方形的一边在轴上,其它三边都在轴的左侧,点是此正方形的中心,若存在直线是函数的图像与正方形的“隔离直线”,请直接写出的取值范围.25.(12分)计算:2cos30°-tan45°-.26.阅读以下材料,并按要求完成相应的任务.“圆材埋壁”是我国古代数学著作《九章算术》中的一个问题:今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?用现在的数学语言表达是:如图,为的直径,弦,垂足为,寸,尺,其中1尺寸,求出直径的长.解题过程如下:连接,设寸,则寸.∵尺,∴寸.在中,,即,解得,∴寸.任务:(1)上述解题过程运用了定理和定理.(2)若原题改为已知寸,尺,请根据上述解题思路,求直径的长.(3)若继续往下锯,当锯到时,弦所对圆周角的度数为.

参考答案一、选择题(每题4分,共48分)1、A【解析】坡面的垂直高度h和水平宽度l的比叫做坡度(或坡比),我们把斜坡面与水平面的夹角叫做坡角,若用α表示,可知坡度与坡角的关系式,tanα(坡度)=垂直距离÷水平距离,根据公式可得水平距离,依据勾股定理可得问题的答案.【详解】∵大坝高20米,背水坝的坡度为1:,

∴水平距离=20×=20米.

根据勾股定理可得背水面的坡长为40米.

故选A.【点睛】本题考查解直角三角形的应用-坡度、坡角的有关知识,熟悉且会灵活应用坡度公式是解此题的关键.2、D【分析】按“左加右减括号内,上加下减括号外”的规律平移即可得出所求函数的解析式.【详解】由题意得=.故选D.【点睛】本题考查了二次函数图象的平移,其规律是:将二次函数解析式转化成顶点式y=a(x-h)2+k

(a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.3、D【分析】根据二次函数的性质得出关于m的不等式,求出不等式的解集即可.【详解】∵二次函数,∴图像开口向上,与x轴的交点坐标为(1,0),(m-1,0),∵当时,,∴m-1>0,∴m>1.故选D.【点睛】本题考查了二次函数的性质和图象和解一元一次不等式,能熟记二次函数的性质是解此题的关键.4、D【解析】相似三角形对应边的比等于相似比,面积之比等于相似比的平方,对应角相等.【详解】根据相似三角形性质可得:A:BC和DE不是对应边,故错;B:面积比应该是,故错;C:对应角相等,故错;D:周长比等于相似比,故正确.故选:D【点睛】考核知识点:相似三角形性质.理解基本性质是关键.5、B【分析】由题意直接根据反比例函数的定义对下列选项进行判定即可.【详解】解:根据反比例函数的定义可知是反比例函数,,是一次函数,,是二次函数,都要排除.故选:B.【点睛】本题考查反比例函数的定义,注意掌握反比例函数解析式的一般形式,也可以转化为的形式.6、D【分析】根据垂径定理可得出AE的值,再根据勾股定理即可求出答案.【详解】解:∵OE⊥AB,∴AE=BE=4,∴.故选:D.【点睛】本题考查的知识点是垂径定理,根据垂径定理得出AE的值是解此题的关键.7、D【分析】欲求∠ADC,又已知一圆心角,可利用圆周角与圆心角的关系求解.【详解】∵A、B、C、D是⊙O上的四点,OA⊥BC,∴弧AC=弧AB(垂径定理),∴∠ADC=∠AOB(等弧所对的圆周角是圆心角的一半);又∠AOB=55°,∴∠ADC=27.5°.故选:D.【点睛】本题考查垂径定理、圆周角定理.关键是将证明弧相等的问题转化为证明所对的圆心角相等.8、C【分析】根据必然事件的概念答题即可【详解】A:抛掷10枚质地均匀的硬币,概率为0.5,但是不一定5枚正面朝上,故A错误;B:概率是表示一个事件发生的可能性的大小,某种彩票的中奖概率为,是指买张这种彩票会有0.1的可能性中奖,故B错误;C:一枚质地均匀的骰子最大的数字是6,故C正确;D:.打开电视机,正在播放戏曲节目是随机事件,故D错误.故本题答案为:C【点睛】本题考查了必然事件的概念9、C【分析】根据正方体的主视图与俯视图都是正方形,圆柱横着放置时,主视图与俯视图都是长方形,球体的主视图与俯视图都是圆形,只有圆锥的主视图与俯视图不同进行分析判定.【详解】解:圆锥的主视图与俯视图分别为圆形、三角形,故选:C.【点睛】本题考查简单的几何体的三视图,注意掌握从不同方向看物体的形状所得到的图形可能不同.10、A【分析】如图,连接AP,延长AP交BC于D,根据重心的性质可得点D为BC中点,AP=2PD,由PE//BC可得△AEP∽△ABD,根据相似三角形的性质即可求出PE的长.【详解】如图,连接AP,延长AP交BC于D,∵点P为△ABC的重心,BC=,∴BD=BC=,AP=2PD,∴,∵PE//BC,∴△AEP∽△ABD,∴,∴PE===.故选:A.【点睛】本题考查三角形重心的性质及相似三角形的判定与性质,三角形的重心是三角形三条中线的交点,重心到顶点的距离与重心到对边中点的距离之比为2:1;正确作出辅助线,构造相似三角形是解题关键.11、B【分析】根据二次根式和分式成立的条件得到关于x的不等式,求解即可.【详解】解:由题意得,解得.故选:B【点睛】本题考查了代数式有意义的条件,一般情况下,若代数式有意义,则分式的分母不等于1,二次根式被开方数大于等于1.12、A【分析】根据阴影部分的面积=S扇形BDO﹣S弓形OD计算即可.【详解】由折叠可知,S弓形AD=S弓形OD,DA=DO.∵OA=OD,∴AD=OD=OA,∴△AOD为等边三角形,∴∠AOD=60°.∵∠AOB=120°,∴∠DOB=60°.∵AD=OD=OA=6,∴AC=CO=3,∴CD=3,∴S弓形AD=S扇形ADO﹣S△ADO6×36π﹣9,∴S弓形OD=6π﹣9,阴影部分的面积=S扇形BDO﹣S弓形OD(6π﹣9)=9.故选:A.【点睛】本题考查了扇形面积与等边三角形的性质,熟练运用扇形公式是解答本题的关键.二、填空题(每题4分,共24分)13、2t【分析】根据翻折的性质,可得CE=,再根据直角三角形30度所对的直角边等于斜边的一半判断出,然后求出,根据对顶角相等可得,根据平行线的性质得到,再求出,然后判断出是等边三角形,根据等边三角形的性质表示出EF,即可解题.【详解】由翻折的性质得,CE=是等边三角形,的周长=故答案为:.【点睛】本题考查折叠问题、等边三角形的判定与性质、含30度的直角三角形、平行线的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.14、9时元【分析】观察图象找出点的坐标,利用待定系数法即可求出关于x的函数关系式,=者做差后,利用二次函数的性质,即可解决最大收益问题.【详解】解:设交易时间为x,售价为,成本为,则设图1、图2的解析式分别为:,依题意得∴解得∴∴出售每千克这种水果收益:∵∴当时,y取得最大值,此时:∴在这段时间内,出售每千克这种水果收益最大的时刻是9时,此时每千克的收益是元故答案为:9时;元【点睛】本题考查了待定系数法求函数解析式、二次函数的性质,解题的关键是:观察函数图象根据点的坐标,利用待定系数法求出关于x的函数关系式.15、①④【分析】先确定顶点及对称轴,结合抛物线的开口方向逐一判断.【详解】因为y=2(x﹣3)2+1是抛物线的顶点式,顶点坐标为(3,1),①对称轴为x=3,当x>3时,y随x的增大而增大,故①正确;②,故②错误;③顶点坐标为(3,1),故③错误;④∵a=1>0,∴开口向上,故④正确.故答案为:①④.【点睛】本题考查了二次函数的性质以及函数的单调性和求抛物线的顶点坐标、对称轴及最值的方法.熟练掌握二次函数的性质是解题的关键.16、1【解析】试题分析:先利用三角形中位线性质得到AB=4,然后根据菱形的性质计算菱形ABCD的周长.∵E,F分别是AD,BD的中点,∴EF为△ABD的中位线,∴AB=2EF=4,∵四边形ABCD为菱形,∴AB=BC=CD=DA=4,∴菱形ABCD的周长=4×4=1.考点:(1)菱形的性质;(2)三角形中位线定理.17、xy(x+y)(x﹣y).【解析】分析:首先提取公因式xy,再对余下的多项式运用平方差公式继续分解.详解:x3y﹣xy3=xy(x2﹣y2)=xy(x+y)(x﹣y).点睛:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式,要首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.18、【分析】根据“随增加而减小”可知,解出k的取值范围,然后根据概率公式求解即可.【详解】由“随增加而减小”得,解得,∴具有性质“随增加而减小”的一次函数的概率为故答案为:.【点睛】本题考查了一次函数的增减性,以及概率的计算,熟练掌握一次函数增减性与系数的关系和概率公式是解题的关键.三、解答题(共78分)19、(1)b,c的值分别为5,-5;(2)当时有最大值【分析】(1)把点代入求解即可得到b,c的值;(2)代入二次函数一般式中顶点坐标的横坐标求解公式进行求解即可.【详解】解:(1)∵抛物线过点(0,-5)和(2,1),∴,解得,∴b,c的值分别为5,-5.(2)a=-1,b=5,∴当x=时y有最大值.【点睛】本题考查了利用待定系数法求解析式,熟记二次函数的图象和性质是解题的关键.20、(1)x;(2)y=﹣4x2+800x;(3)如果要求总利润不低于38400元,那么该厂购进化工原料的吨数应该控制在100吨~150吨范围内.【分析】(1)根据“每1吨化工原料可以加工成化工产品0.8吨”,即可求出;(2)根据总利润=总售价-总成本即可求出y关于x的函数关系式;(3)先求出y=38400元时,x的值,然后根据二次函数图象的开口方向和增减性即可求出x的取值范围.【详解】(1)x÷0.8=x吨,故答案为:x;故答案为:x;(2)根据题意得,y=x[1600﹣4(x﹣50)]﹣x•800=﹣4x2+800x,则y关于x的函数关系式为:y=﹣4x2+800x;(3)当y=38400时,﹣4x2+800x=38400,x2﹣200x+9600=0,(x﹣120)(x﹣80)=0,x=120或80,∵﹣4<0,∴当y≥38400时,80≤x≤120,∴100≤x≤150,∴如果要求总利润不低于38400元,那么该厂购进化工原料的吨数应该控制在100吨~150吨范围内.【点睛】此题考查的是二次函数的应用,掌握实际问题中的等量关系和二次函数的增减性是解决此题的关键.21、(1)x1=-1+,x2=-1-;(2)y1=-,y2=.【解析】试题分析:(1)根据方程的特点,利用公式法解一元二次方程即可;(2)根据因式分解法,利用平方差公式因式分解,然后再根据乘积为0的方程的解法求解即可.试题解析:(1)∵a=2,b=4,c=-1∴△=b2-4ac=16+8=24>0∴x==∴x1=-1+,x2=-1-(2)(y+2)2-(3y-1)2=0[(y+2)+(3y-1)][(y+2)-(3y-1)]=0即4y+1=0或-2y+3=0解得y1=-,y2=.22、1【分析】根据绝对值、负次数幂、二次根式、三角函数的性质计算即可.【详解】原式=2﹣+3+2﹣2×=2﹣+3+2﹣=(2+3)+(﹣+2﹣)=1+0=1.【点睛】本题考查绝对值、负次数幂、二次根式、三角函数的计算,关键在于牢记相关基础知识.23、(1)BCP,PCD,BCP,;(2)2;(3)作图与求解过程见解析,2PA+PB的最小值为.【分析】(1)连结AD,过点A作AF⊥CB于点F,AP+BP=AP+PD,要使AP+BP最小,AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即可求解;(2)在AB上截取BF=2,连接PF,PC,AB=8,PB=1,BF=2,证明△ABP∽△PBF,当点F,点P,点C三点共线时,AP+PC的值最小,即可求解;(3)延长OC,使CF=1,连接BF,OP,PF,过点F作FB⊥OD于点M,确定,且∠AOP=∠AOP,△AOP∽△POF,当点F,点P,点B三点共线时,2AP+PB的值最小,即可求解.【详解】解:(1)如图1,连结AD,过点A作AF⊥CB于点F,∵AP+BP=AP+PD,要使AP+BP最小,∴AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即:AP+BP最小值为AD,∵AC=9,AF⊥BC,∠ACB=60°∴CF=3,AF=;∴DF=CF﹣CD=3﹣1=2,∴AD=,∴AP+BP的最小值为;故答案为:;(2)如图2,在AB上截取BF=2,连接PF,PC,∵AB=8,PB=1,BF=2,∴,且∠ABP=∠ABP,∴△ABP∽△PBF,∴,∴PF=AP,∴AP+PC=PF+PC,∴当点F,点P,点C三点共线时,AP+PC的值最小,∴CF=,∴AP+PC的值最小值为2,故答案为:2;(3)如图3,延长OC,使CF=1,连接BF,OP,PF,过点F作FB⊥OD于点M,∵OC=1,FC=1,∴FO=8,且OP=1,OA=2,∴,且∠AOP=∠AOP∴△AOP∽△POF∴,∴PF=2AP∴2PA+PB=PF+PB,∴当点F,点P,点B三点共线时,2AP+PB的值最小,∵∠COD=120°,∴∠FOM=60°,且FO=8,FM⊥OM∴OM=1,FM=1,∴MB=OM+OB=1+3=7∴FB=,∴2PA+PB的最小值为.【点睛】本题主要考查了圆的有关知识,勾股定理,相似三角形的判定和性质,解本题的关键是根据材料中的思路构造出相似三角形..24、(1)①④;(2);(3)或【分析】(1)根据的“隔离直线”的定义即可解决问题;(2)存在,连接,求得与垂直且过的直接就是“隔离直线”,据此即可求解;(3)分两种情形正方形在x轴上方以及在x轴下方时,分别求出正方形的一个顶点在直线上时的t的值即可解决问题.【详解】(1)根据的“隔离直线”的定义可知,是图1函数的图象与正方形OABC的“隔离直线”;直线也是图1函数的图象与正方形OABC的“隔离直线”;而与不满足图1函数的图象与正方形OABC的“隔离直线”的条件;

故答案为:①④;(2)存在,理由如下:连接,过点作轴于点,如图,在Rt△DGO中,,∵⊙O的半径为,

∴点D在⊙O上.

过点D作DH⊥OD交y轴于点H,

∴直线DH是⊙O的切线,也是△EDF与⊙O的“隔离直线”.设直线OD的解析式为,将点D(2,1)的坐标代入得,解得:,∵DH⊥OD,∴设直线DH的解析式为,将点D(2,1)的坐标代入得,解得:,∴直线DH的解析式为,∴“隔离直线”的表达式为;(3)如图:由题意点F的坐标为(),当直线经过点F时,,

∴,

∴直线,即图中直线EF,

∵正方形A1B1C1D1的中心M(1,t),

过点作⊥y轴于点G

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论