2023届广东省佛山市名校数学九上期末学业水平测试模拟试题含解析_第1页
2023届广东省佛山市名校数学九上期末学业水平测试模拟试题含解析_第2页
2023届广东省佛山市名校数学九上期末学业水平测试模拟试题含解析_第3页
2023届广东省佛山市名校数学九上期末学业水平测试模拟试题含解析_第4页
2023届广东省佛山市名校数学九上期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是()A.30° B.45° C.60° D.40°2.反比例函数,下列说法不正确的是()A.图象经过点(1,-3) B.图象位于第二、四象限C.图象关于直线y=x对称 D.y随x的增大而增大3.如图,将绕点逆时针旋转70°到的位置,若,则()A.45° B.40° C.35° D.30°4.如图,一人站在两等高的路灯之间走动,为人在路灯照射下的影子,为人在路灯照射下的影子.当人从点走向点时两段影子之和的变化趋势是()A.先变长后变短 B.先变短后变长C.不变 D.先变短后变长再变短5.如图,⊙O是△ABC的外接圆,已知∠ACB=60°,则∠ABO的大小为()A.30° B.40° C.45° D.50°6.如图,三个边长均为的正方形重叠在一起,、是其中两个正方形对角线的交点,则两个阴影部分面积之和是()A. B. C. D.7.方程x2﹣x=0的解为()A.x1=x2=1 B.x1=x2=0 C.x1=0,x2=1 D.x1=1,x2=﹣18.已知点在抛物线上,则点关于抛物线对称轴的对称点坐标为()A. B. C. D.9.二次函数y=ax2+bx+c(a≠0)与一次函数y=ax+c在同一坐标系中的图象大致为()A. B. C. D.10.铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数关系式为y=-x2+x+.则该运动员此次掷铅球的成绩是()A.6m B.12m C.8m D.10m二、填空题(每小题3分,共24分)11.如图所示,在中,,将绕点旋转,当点与点重合时,点落在点处,如果,,那么的中点和的中点的距离是______.12.如图,中,,,,将绕顶点逆时针旋转到处,此时线段与的交点恰好为的中点,则的面积为______.13.若一个圆锥的侧面展开图是一个半径为3cm,圆心角为120°的扇形,则该圆锥的底面半径为__________cm.14.若m2﹣2m﹣1=0,则代数式2m2﹣4m+3的值为.15.如图,与是以点为位似中心的位似图形,相似比为,,,若点的坐标是,则点的坐标是__________,点的坐标是__________.16.平面直角坐标系中,点A,B的坐标分别是A(2,4),B(3,0),在第一象限内以原点O为位似中心,把△OAB缩小为原来的,则点A的对应点A'的坐标为__________.17.钟表的轴心到分钟针端的长为那么经过分钟,分针针端转过的弧长是_________________.18.若二次函数y=2(x+1)2+3的图象上有三个不同的点A(x1,4)、B(x1+x2,n)、C(x2,4),则n的值为_____.三、解答题(共66分)19.(10分)在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+ax+a(a≠0)交x轴于点A和点B(点A在点B左边),交y轴于点C,连接AC,tan∠CAO=1.(1)如图1,求抛物线的解析式;(2)如图2,D是第一象限的抛物线上一点,连接DB,将线段DB绕点D顺时针旋转90°,得到线段DE(点B与点E为对应点),点E恰好落在y轴上,求点D的坐标;(1)如图1,在(2)的条件下,过点D作x轴的垂线,垂足为H,点F在第二象限的抛物线上,连接DF交y轴于点G,连接GH,sin∠DGH=,以DF为边作正方形DFMN,P为FM上一点,连接PN,将△MPN沿PN翻折得到△TPN(点M与点T为对应点),连接DT并延长与NP的延长线交于点K,连接FK,若FK=,求cos∠KDN的值.20.(6分)三根垂直地面的木杆甲、乙、丙,在路灯下乙、丙的影子如图所示.试确定路灯灯泡的位置,再作出甲的影子.(不写作法,保留作图痕迹)21.(6分)在中,,是边上的中线,点在射线上.猜想:如图①,点在边上,,与相交于点,过点作,交的延长线于点,则的值为.探究:如图②,点在的延长线上,与的延长线交于点,,求的值.应用:在探究的条件下,若,,则.22.(8分)从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.如图1,在中,是的完美分割线,且,则的度数是如图2,在中,为角平分线,,求证:为的完美分割线.如图2,中,是的完美分割线,且是以为底边的等腰三角形,求完美分割线的长.23.(8分)如图,在平面直角坐标系中,函数的图象与直线交于点A(3,m).(1)求k、m的值;(2)已知点P(n,n)(n>0),过点P作平行于轴的直线,交直线y=x-2于点M,过点P作平行于y轴的直线,交函数的图象于点N.①当n=1时,判断线段PM与PN的数量关系,并说明理由;②若PN≥PM,结合函数的图象,直接写出n的取值范围.24.(8分)如图,对称轴为直线的抛物线与轴交于两点,与轴交于点连接其中点坐标.(1)求抛物线的解析式;(2)直线与抛物线交于点与轴交于点求的面积;(3)在直线下方抛物线上有一点过作轴交直线于点.四边形为平行四边形,求点的坐标.25.(10分)如图,在矩形ABCD中,AB=10,动点E、F分别在边AB、AD上,且AF=AE.将△AEF绕点E顺时针旋转10°得到△A'EF',设AE=x,△A'EF'与矩形ABCD重叠部分面积为S,S的最大值为1.(1)求AD的长;(2)求S关于x的函数解析式,并写出自变量x的取值范围.26.(10分)国家教育部提出“每天锻炼一小时,健康工作五十年,幸福生活一辈子”.万州区某中学对九年级部分学生进行问卷调查“你最喜欢的锻炼项目是什么?”,规定从“打球”,“跑步”,“游泳”,“跳绳”,“其他”五个选项中选择自己最喜欢的项目,且只能选择一个项目,并将调查结果绘制成如下两幅不完整的统计图.最喜欢的锻炼项目人数打球120跑步游泳跳绳30其他(1)这次问卷调查的学生总人数为,人数;(2)扇形统计图中,,“其他”对应的扇形的圆心角的度数为度;(3)若该年级有1200名学生,估计喜欢“跳绳”项目的学生大约有多少人?

参考答案一、选择题(每小题3分,共30分)1、A【解析】根据切线的性质由AB与⊙O相切得到OB⊥AB,则∠ABO=90°,利用∠A=30°得到∠AOB=60°,再根据三角形外角性质得∠AOB=∠C+∠OBC,由于∠C=∠OBC,所以∠C=∠AOB=30°.【详解】解:连结OB,如图,∵AB与⊙O相切,∴OB⊥AB,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∵∠AOB=∠C+∠OBC,而∠C=∠OBC,∴∠C=∠AOB=30°.故选A.【点睛】此题考查了切线的性质:圆的切线垂直于经过切点的半径;以及圆周角定理:等弧所对的圆周角等于所对圆心角的一半.2、D【解析】通过反比例图象上的点的坐标特征,可对A选项做出判断;通过反比例函数图象和性质、增减性、对称性可对其它选项做出判断,得出答案.【详解】解:由点的坐标满足反比例函数,故A是正确的;由,双曲线位于二、四象限,故B也是正确的;由反比例函数的对称性,可知反比例函数关于对称是正确的,故C也是正确的,由反比例函数的性质,,在每个象限内,随的增大而增大,不在同一象限,不具有此性质,故D是不正确的,故选:D.【点睛】考查反比例函数的性质,当时,在每个象限内随的增大而增大的性质、反比例函数的图象是轴对称图象,和是它的对称轴,同时也是中心对称图形;熟练掌握反比例函数图象上点的坐标特征和反比例函数图象和性质是解答此题的关键.3、D【分析】首先根据旋转角定义可以知道,而,然后根据图形即可求出.【详解】解:∵绕点逆时针旋转70°到的位置,∴,而,∴故选D.【点睛】此题主要考查了旋转的定义及性质,其中解题主要利用了旋转前后图形全等,对应角相等等知识.4、C【分析】连接DF,由题意易得四边形CDFE为矩形.由DF∥GH,可得.又AB∥CD,得出,设=a,DF=b(a,b为常数),可得出,从而可以得出,结合可将DH用含a,b的式子表示出来,最后得出结果.【详解】解:连接DF,已知CD=EF,CD⊥EG,EF⊥EG,∴四边形CDFE为矩形.∴DF∥GH,∴又AB∥CD,∴.设=a,DF=b,∴,∴∴∴GH=,∵a,b的长是定值不变,∴当人从点走向点时两段影子之和不变.故选:C.【点睛】本题考查了相似三角形的应用:利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度.5、A【分析】根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得∠AOB=120°,再根据三角形内角和定理可得答案.【详解】∵∠ACB=60°,∴∠AOB=120°,∵AO=BO,∴∠ABO=(180°﹣120°)÷2=30°,故选A.【点睛】本题考查了圆周角定理,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6、A【分析】连接AN,CN,通过将每部分阴影的面积都转化为正方形ACFE的面积的,则答案可求.【详解】如图,连接AN,CN∵四边形ACFE是正方形∴∵,∴∴∴所以四边形BCDN的面积为正方形ACFE的面积的同理可得另一部分阴影的面积也是正方形ACFE的面积的∴两部分阴影部分的面积之和为正方形ACFE的面积的即故选A【点睛】本题主要考查不规则图形的面积,能够利用全等三角形对面积进行转化是解题的关键.7、C【解析】通过提取公因式对等式的左边进行因式分解,然后解两个一元一次方程即可.【详解】解:∵x2﹣x=0,∴x(x﹣1)=0,∴x=0或x﹣1=0,∴x1=0,x2=1,故选:C.【点睛】本题考查了一元二次方程的解法,属于基本题型,熟练掌握分解因式的方法是解题的关键.8、A【分析】先将点A代入抛物线的解析式中整理出一个关于a,b的等式,然后利用平方的非负性求出a,b的值,进而可求点A的坐标,然后求出抛物线的对称轴即可得出答案.【详解】∵点在抛物线上,∴,整理得,,解得,,.抛物线的对称轴为,∴点关于抛物线对称轴的对称点坐标为.故选:A.【点睛】本题主要考查完全平方公式的应用、平方的非负性和二次函数的性质,掌握二次函数的性质是解题的关键.9、D【分析】先根据一次函数的图象判断a、c的符号,再判断二次函数图象与实际是否相符,判断正误.【详解】解:A、由一次函数y=ax+c的图象可得:a>0,此时二次函数y=ax2+bx+c的图象应该开口向上,错误;

B、由一次函数y=ax+c的图象可得:a>0,c>0,此时二次函数y=ax2+bx+c的图象应该开口向上,交于y轴的正半轴,错误;

C、由一次函数y=ax+c的图象可得:a<0,c>0,此时二次函数y=ax2+bx+c的图象应该开口向下,错误.

D、由一次函数y=ax+c的图象可得:a<0,c>0,此时二次函数y=ax2+bx+c的图象应该开口向下,与一次函数的图象交于同一点,正确;

故选:D.【点睛】本题考查二次函数的图象,一次函数的图象,解题的关键是熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.10、D【分析】依题意,该二次函数与x轴的交点的x值为所求.即在抛物线解析式中.令y=0,求x的正数值.【详解】把y=0代入y=-x1+x+得:-x1+x+=0,解之得:x1=2,x1=-1.又x>0,解得x=2.故选D.二、填空题(每小题3分,共24分)11、4【分析】设,在中,,得.由勾股定理,再求AM,AB,证,.得,,可得.【详解】如图所示,,是的中点,,,.设,在中,,.,.,.,,,可得,同理可证.,,.故答案为:4【点睛】考核知识点:解直角三角形.构造直角三角形,利用三角形相关知识分析问题是关键.12、【分析】A1B1与OA相交于点E,作B1H⊥OB于点H,如图,利用勾股定理得到AB=1,再根据直角三角形斜边上的中线性质得OD=AD=DB,则∠1=∠A,接着根据旋转的性质得∠3=∠2,A1B1=AB=1,OB1=OB=8,OA1=OA=2,易得∠2+∠1=90°,所以∠OEB1=90°,于是可利用面积法计算出OE,再由四边形OEB1H为矩形得到B1H=OE,根据三角形的面积公式即可得出结论.【详解】A1B1与OA相交于点E,作B1H⊥OB于点H,如图,∵∠AOB=90°,AO=2,BO=8,∴AB1.∵D为AB的中点,∴OD=AD=DB,∴∠1=∠A.∵△AOB绕顶点O逆时针旋转得到△A1OB1,∴∠3=∠2,A1B1=AB=1,OB1=OB=8,OA1=OA=2.∵∠3+∠A=90°,∴∠2+∠1=90°,∴∠OEB1=90°.∵OE•A1B1OB1•OA1,∴OE.∵∠B1EO=∠EOB=∠OHB1=90°,∴四边形OEB1H为矩形,∴B1H=OE,∴的面积===.故答案为:.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了全等三角形的判定与性质和矩形的判定与性质.13、1【分析】(1)根据,求出扇形弧长,即圆锥底面周长;(2)根据,即,求圆锥底面半径.【详解】该圆锥的底面半径=故答案为:1.【点睛】圆锥的侧面展开图是扇形,解题关键是理解扇形弧长就是圆锥底面周长.14、1【解析】试题分析:先求出m2﹣2m的值,然后把所求代数式整理出已知条件的形式并代入进行计算即可得解.解:由m2﹣2m﹣1=0得m2﹣2m=1,所以,2m2﹣4m+3=2(m2﹣2m)+3=2×1+3=1.故答案为1.考点:代数式求值.15、(2,2)【分析】根据坐标系中,以点为位似中心的位似图形的性质可得点D的坐标,过点C作CM⊥OD于点M,根据含30°角的直角三角形的性质,可求点C的坐标.【详解】∵与是以点为位似中心的位似图形,相似比为,点的坐标是,∴点D的坐标是(8,0),∵,,∴∠D=30°,∴OC=OD=×8=4,过点C作CM⊥OD于点M,∴∠OCM=30°,∴OM=OC=×2=2,CM=OM=2,∴点C的坐标是(2,2).故答案是:(2,2);(8,0).【点睛】本题主要考查直角坐标系中,位似图形的性质和直角三角形的性质,添加辅助线,构造直角三角形,是解题的关键.16、(1,2)【分析】根据平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,结合题中是在第一象限内进行变换进一步求解即可.【详解】由题意得:在第一象限内,以原点为位似中心,把△OAB缩小为原来的,则点A的对应点A'的坐标为A(2×,4×),即(1,2).故答案为:(1,2).【点睛】本题主要考查了直角坐标系中位似图形的变换,熟练掌握相关方法是解题关键.17、【分析】钟表的分针经过40分钟转过的角度是,即圆心角是,半径是,弧长公式是,代入就可以求出弧长.【详解】解:圆心角的度数是:,弧长是.【点睛】本题考查了求弧长,正确记忆弧长公式,掌握钟面角是解题的关键.18、1【分析】先根据点A,C的坐标,建立方程求出x1+x2=-2,代入二次函数解析式即可得出结论.【详解】∵A(x1,4)、C(x2,4)在二次函数y=2(x+1)2+3的图象上,∴2(x+1)2+3=4,∴2x2+4x+1=0,根据根与系数的关系得,x1+x2=-2,∵B(x1+x2,n)在二次函数y=2(x+1)2+3的图象上,∴n=2(-2+1)2+3=1,故答案为:1.【点睛】此题主要考查了二次函数图象上点的特点,根与系数的关系,求出x1+x2=-2是解本题的关键.三、解答题(共66分)19、(1)y=﹣x2+x+1;(2)D的坐标为(1,1);(1)【分析】(1)通过抛物线y=先求出点A的坐标,推出OA的长度,再由tan∠CAO=1求出OC的长度,点C的坐标,代入原解析式即可求出结论;(2)如图2,过点D分别作x轴和y轴的垂线,垂足分别为W和Z,证△DZE≌△DWB,得到DZ=DW,由此可知点D的横纵坐标相等,设出点D坐标,代入抛物线解析式即可求出点D坐标;(1)如图1,连接CD,分别过点C,H作F的垂线,垂足分别为Q,I,过点F作DC的垂线,交DC的延长线于点U,先求出点G坐标,求出直线DG解析式,再求出点F的坐标,即可求出正方形FMND的边长,再求出其对角线FN的长度,最后证点F,K,M,N,D共圆,推出∠KDN=∠KFN,求出∠KFN的余弦值即可.【详解】解:(1)在抛物线y=中,当y=0时,x1=﹣1,x2=4,∴A(﹣1,0),B(4,0),∴OA=1,∵tan∠CAO=1,∴OC=1OA=1,∴C(0,1),∴a=1,∴a=2,∴抛物线的解析式为:y=﹣x2+x+1;(2)如图2,过点D分别作x轴和y轴的垂线,垂足分别为W和Z,∵∠ZDW=∠EDB=90°,∴∠ZDE=∠WDB,∵∠DZE=∠DWB=90°,DE=DB,∴△DZE≌△DWB(AAS),∴DZ=DW,设点D(k,﹣k2+k+1),∴k=﹣k2+k+1,解得,k1=﹣(舍去),k2=1,∴D的坐标为(1,1);(1)如图1,连接CD,分别过点C,H作F的垂线,垂足分别为Q,I,∵sin∠DGH=∴设HI=4m,HG=5m,则IG=1m,由题意知,四边形OCDH是正方形,∴CD=DH=1,∵∠CDQ+∠IDH=90°,∠IDH+∠DHI=90°,∴∠CDQ=∠DHI,又∵∠CQD=∠DIH=90°,∴△CQD≌△DIH(AAS),设DI=n,则CQ=DI=n,DQ=HI=4m,∴IQ=DQ﹣DI=4m﹣n,∴GQ=GI﹣IQ=1m﹣(4m﹣n)=n﹣m,∵∠GCQ+∠QCD=90°,∠QCD+∠CDQ=90°,∴∠GCQ=∠CDQ,∴△GCQ∽△CDQ,∴∴∴n=2m,∴CQ=DI=2m,∴IQ=2m,∴tan∠CDG=,∵CD=1,∴CG=,∴GO=CO﹣CG=,设直线DG的解析式为y=kx+,将点D(1,1)代入,得,k=,∴yDG=,设点F(t,﹣t2+t+1),则﹣t2+t+1=t+,解得,t1=1(舍去),t2=﹣,∴F(﹣,)过点F作DC的垂线,交DC的延长线于点U,则,∴在Rt△UFD中,DF=,由翻折知,△NPM≌△NPT,∴∠MNP=∠TNP,NM=NT=ND,∠TPN=∠MPN,TP=MP,又∵NS⊥KD,∴∠DNS=∠TNS,DS=TS,∴∠SNK=∠TNP+∠TNS=×90°=45°,∴∠SKN=45°,∵∠TPK=180°﹣∠TPN,∠MPK=180°﹣∠MPN,∴∠TPK=∠MPK,又∵PK=PK,∴△TPK≌△MPK(SAS),∴∠MKP=∠TKP=45°,∴∠DKM=∠MKP+∠TKP=90°,连接FN,DM,交点为R,再连接RK,则RK=RF=RD=RN=RM,则点F,D,N,M,K同在⊙R上,FN为直径,∴∠FKN=90°,∠KDN=∠KFN,∵FN=,∴在Rt△FKN中,∴cos∠KDN=cos∠KFN.【点睛】考核知识点:二次函数综合题.熟记二次函数基本性质,数形结合分析问题是关键.20、见解析【解析】分别作过乙,丙的头的顶端和相应的影子的顶端的直线得到的交点就是点光源所在处,连接点光源和甲的头的顶端并延长交平面于一点,这点到甲的脚端的距离是就是甲的影长.解:.21、猜想:;探究:6.【分析】猜想:如图①,证明,利用相似比得,则,再证明,然后利用相似比即可得到;探究:过点作作,交的延长线于点,如图②,设,则,先证明,得到,即,再证明,从而利用相似比得;应用:先利用勾股定理得,则,再证明,利用相似比得到,然后利用比例的性质计算BP的长.【详解】解:猜想:如图①∵是边上的中线,∴,∵,∴,∴,∵,∴,∵,∴,∴;探究:过点作作,交的延长线于点,如图②,设,则,∴,∴,∴,即,∵,∴,∴;应用:,,在中,,∴,∵,∴,∴,∴.故答案为,6.【点睛】本题考查了相似三角形的综合问题,掌握平行线的性质以及判定定理、相似三角形的性质以及判定定理、勾股定理是解题的关键.22、(1)88°;(2)详见解析;(3)【分析】(1)是的完美分割线,且,得∠ACD=44°,∠BCD=44°,进而即可求解;(2)由,得,由平分,,得为等腰三角形,结合,即可得到结论;(3)由是的完美分割线,得从而得,设,列出方程,求出x的值,再根据,即可得到答.【详解】(1)∵是的完美分割线,且,∴,∠A=∠ACD=44°,∴∠A=∠BCD=44°,∴.故答案是:88°;,,不是等腰三角形,平分,,,为等腰三角形.,,,是的完美分割线.∵是以为底边的等腰三角形,∴,∵是的完美分割线,∴,设,则,,,.【点睛】本题主要考查等腰三角形的性质与相似三角形的判定和性质定理,掌握相似三角形的性质定理,是解题的关键.23、(1)k的值为3,m的值为1;(2)0<n≤1或n≥3.【解析】分析:(1)将A点代入y=x-2中即可求出m的值,然后将A的坐标代入反比例函数中即可求出k的值.(2)①当n=1时,分别求出M、N两点的坐标即可求出PM与PN的关系;②由题意可知:P的坐标为(n,n),由于PN≥PM,从而可知PN≥2,根据图象可求出n的范围.详解:(1)将A(3,m)代入y=x-2,∴m=3-2=1,∴A(3,1),将A(3,1)代入y=,∴k=3×1=3,m的值为1.(2)①当n=1时,P(1,1),令y=1,代入y=x-2,x-2=1,∴x=3,∴M(3,1),∴PM=2,令x=1代入y=,∴y=3,∴N(1,3),∴PN=2∴PM=PN,②P(n,n),点P在直线y=x上,过点P作平行于x轴的直线,交直线y=x-2于点M,M(n+2,n),∴PM=2,∵PN≥PM,即PN≥2,∴0<n≤1或n≥3点睛:本题考查反比例函数与一次函数的综合

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论