2025届甘肃省武威市凉州区永昌镇和寨九制学校数学九上期末联考试题含解析_第1页
2025届甘肃省武威市凉州区永昌镇和寨九制学校数学九上期末联考试题含解析_第2页
2025届甘肃省武威市凉州区永昌镇和寨九制学校数学九上期末联考试题含解析_第3页
2025届甘肃省武威市凉州区永昌镇和寨九制学校数学九上期末联考试题含解析_第4页
2025届甘肃省武威市凉州区永昌镇和寨九制学校数学九上期末联考试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届甘肃省武威市凉州区永昌镇和寨九制学校数学九上期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,中,,,,则的长为()A. B. C.5 D.2.如图,将绕点按逆时针方向旋转后得到,若,则的度数为()A. B. C. D.3.已知抛物线与二次函数的图像相同,开口方向相同,且顶点坐标为,它对应的函数表达式为()A. B.C. D.4.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是()A.方差 B.平均数 C.众数 D.中位数5.如图,是二次函数图象的一部分,在下列结论中:①;②;③有两个相等的实数根;④;其中正确的结论有()A.1个 B.2个 C.3个 D.4个6.时钟上的分针匀速旋转一周需要60分钟,则经过10分钟,分针旋转了().A.10° B.20° C.30° D.60°7.如图,在平面直角坐标系中,与轴相切,直线被截得的弦长为,若点的坐标为,则的值为()A. B. C. D.8.一组数据:2,3,6,4,3,5,这组数据的中位数、众数分别是()A.3,3 B.3,4 C.3.5,3 D.5,39.下列说法正确的是()A.了解飞行员视力的达标率应使用抽样调查B.一组数据3,6,6,7,9的中位数是6C.从2000名学生中选200名学生进行抽样调查,样本容量为2000D.一组数据1,2,3,4,5的方差是1010.已知两个相似三角形的相似比为2∶3,较小三角形面积为12平方厘米,那么较大三角形面积为()A.18平方厘米 B.8平方厘米 C.27平方厘米 D.平方厘米二、填空题(每小题3分,共24分)11.若A(-2,a),B(1,b),C(2,c)为二次函数的图象上的三点,则a,b,c的大小关系是__________________.(用“<”连接)12.如图将矩形绕点顺时针旋转得矩形,若,,则图中阴影部分的面积为__________.13.如图是二次函数y=ax2+bx+c的部分图象,由图象可知方程ax2+bx+c=0的解是_________.14.如图所示,在平面直角坐标系中,正方形OABC的顶点O与原点重合,顶点A,C分别在x轴、y轴上,双曲线y=kx﹣1(k≠0,x>0)与边AB、BC分别交于点N、F,连接ON、OF、NF.若∠NOF=45°,NF=2,则点C的坐标为_____.15.已知反比例函数,在其位于第三像限内的图像上有一点M,从M点向y轴引垂线与y轴交于点N,连接M与坐标原点O,则ΔMNO面积是_____.16..如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此圆锥高OC的长度是_______.17.写出一个以-1为一个根的一元二次方程.18.如图,C为半圆内一点,O为圆心,直径AB长为1cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为_________cm1.三、解答题(共66分)19.(10分)如图,在中,,,以为原点所在直线为轴建立平面直角坐标系,的顶点在反比例函数的图象上.(1)求反比例函数的解析式:(2)将向右平移个单位长度,对应得到,当函数的图象经过一边的中点时,求的值.20.(6分)如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是45°,若坡角∠FAE=30°,求大树的高度(结果保留根号).21.(6分)综合与实践—探究正方形旋转中的数学问题问题情境:已知正方形中,点在边上,且.将正方形绕点顺时针旋转得到正方形(点,,,分别是点,,,的对应点).同学们通过小组合作,提出下列数学问题,请你解答.特例分析:(1)“乐思”小组提出问题:如图1,当点落在正方形的对角线上时,设线段与交于点.求证:四边形是矩形;(2)“善学”小组提出问题:如图2,当线段经过点时,猜想线段与满足的数量关系,并说明理由;深入探究:(3)请从下面,两题中任选一题作答.我选择题.A.在图2中连接和,请直接写出的值.B.“好问”小组提出问题:如图3,在正方形绕点顺时针旋转的过程中,设直线交线段于点.连接,并过点作于点.请在图3中补全图形,并直接写出的值.22.(8分)某文物古迹遗址每周都吸引大量中外游客前来参观,如果游客过多,对文物古迹会产生不良影响,但同时考虑到文物的修缮和保存费用的问题,还要保证有一定的门票收入,因此遗址的管理部门采取了升、降门票价格的方法来控制参观人数.在实施过程中发现:每周参观人数y(人)与票价x(元)之间恰好构成一次函数关系:y=﹣500x+1.在这样的情况下,如果要确保每周有40000元的门票收入,那么门票价格应定为多少元?23.(8分)如图,一次函数y=﹣2x+8与反比例函数(x>0)的图象交于A(m,6),B(3,n)两点,与x轴交于D点.(1)求反比例函数的解析式.(2)在第一象限内,根据图象直接写出一次函数值大于反比例函数值时自变量x的取值范围.24.(8分)已知ΔABC在平面直角坐标系中的位置如图所示.(1)分别写出图中点A和点C的坐标;(2)画出ΔABC绕点C按顺时针方向旋转;90°后的.25.(10分)如图,在平行四边形ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F.(1)求证:AB=AF;(2)当AB=3,BC=4时,求的值.26.(10分)已知抛物线y=ax2+bx+c经过点A(﹣2,0),B(3,0),与y轴负半轴交于点C,且OC=OB.(1)求抛物线的解析式;(2)在y轴负半轴上存在一点D,使∠CBD=∠ADC,求点D的坐标;(3)点D关于直线BC的对称点为D′,将抛物线y=ax2+bx+c向下平移h个单位,与线段DD′只有一个交点,直接写出h的取值范围.

参考答案一、选择题(每小题3分,共30分)1、C【解析】过C作CD⊥AB于D,根据含30度角的直角三角形求出CD,解直角三角形求出AD,在△BDC中解直角三角形求出BD,相加即可求出答案.【详解】过C作CD⊥AB于D,则∠ADC=∠BDC=90,∵∠A=30,AC=,∴CD=AC=,由勾股定理得:AD=CD=3,∵tanB==,∴BD=2,∴AB=2+3=5,故选C.【点睛】本题考查解直角三角形.2、D【分析】由题意可知旋转角∠BCB′=60°,则根据∠ACB′=∠BCB′+∠ACB即可得出答案.【详解】解:根据旋转的定义可知旋转角∠BCB′=60°,∴∠ACB′=∠BCB′+∠ACB=60°+25°=85°.故选:D.【点睛】本题主要考查旋转的定义,解题的关键是找到旋转角,以及旋转后的不变量.3、D【分析】先根据抛物线与二次函数的图像相同,开口方向相同,确定出二次项系数a的值,然后再通过顶点坐标即可得出抛物线的表达式.【详解】∵抛物线与二次函数的图像相同,开口方向相同,∵顶点坐标为∴抛物线的表达式为故选:D.【点睛】本题主要考查抛物线的顶点式,掌握二次函数表达式中的顶点式是解题的关键.4、A【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.【详解】平均数,众数,中位数都是反映数字集中趋势的数量,方差是反映数据离散水平的数据,也就会说反映数据稳定程度的数据是方差故选A考点:方差5、C【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对各个结论进行判断.【详解】解:由抛物线的开口方向向上可推出a>0,

与y轴的交点为在y轴的负半轴上可推出c=-1<0,

对称轴为,a>0,得b<0,

故abc>0,故①正确;

由对称轴为直线,抛物线与x轴的一个交点交于(2,0),(3,0)之间,则另一个交点在(0,0),(-1,0)之间,

所以当x=-1时,y>0,

所以a-b+c>0,故②正确;

抛物线与y轴的交点为(0,-1),由图象知二次函数y=ax2+bx+c图象与直线y=-1有两个交点,

故ax2+bx+c+1=0有两个不相等的实数根,故③错误;

由对称轴为直线,由图象可知,所以-4a<b<-2a,故④正确.

所以正确的有3个,故选:C.【点睛】本题考查了二次函数的图象与系数的关系,解答此类问题的关键是掌握二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定,解题时要注意数形结合思想的运用.6、D【分析】先求出时钟上的分针匀速旋转一分钟时的度数为6°,再求10分钟分针旋转的度数就简单了.【详解】解:∵时钟上的分针匀速旋转一周的度数为360°,时钟上的分针匀速旋转一周需要60分钟,则时钟上的分针匀速旋转一分钟时的度数为:360÷60=6°,那么10分钟,分针旋转了10×6°=60°,故选:D.【点睛】本题考查了生活中的旋转现象,明确分针旋转一周,分针旋转了360°,所以时钟上的分针匀速旋转一分钟时的度数,是解答本题的关键.7、B【分析】过点P作PH⊥AB于H,PD⊥x轴于D,交直线y=x于E,连结PA,根据切线的性质得PC⊥y轴,则P点的横坐标为4,所以E点坐标为(4,4),易得△EOD和△PEH都是等腰直角三角形,根据垂径定理由PH⊥AB得AH=,根据勾股定理可得PH=2,于是根据等腰直角三角形的性质得PE=,则PD=,然后利用第一象限点的坐标特征写出P点坐标.【详解】解:过点P作PH⊥AB于H,PD⊥x轴于D,交直线y=x于E,连结PA,

∵⊙P与y轴相切于点C,

∴PC⊥y轴,

∴P点的横坐标为4,

∴E点坐标为(4,4),

∴△EOD和△PEH都是等腰直角三角形,

∵PH⊥AB,

∴AH=,

在△PAH中,PH=,

∴PE=,

∴PD=,

∴P点坐标为(4,).故选:B【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了垂径定理.8、C【分析】把这组数据按照从小到大的顺序排列,第1、4个数的平均数是中位数,在这组数据中出现次数最多的是1,得到这组数据的众数.【详解】要求一组数据的中位数,把这组数据按照从小到大的顺序排列2,1,1,4,5,6,第1、4个两个数的平均数是(1+4)÷2=1.5,所以中位数是1.5,在这组数据中出现次数最多的是1,即众数是1.故选:C.【点睛】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.9、B【解析】选项A,了解飞行员视力的达标率应使用全面调查,此选项错误;选项B,一组数据3,6,6,7,9的数的个数是奇数,故中位数是处于中间位置的数6,此选项正确;选项C,从2000名学生中选200名学生进行抽样调查,样本容量应该是200,此选项错误;选项D,一组数据1,2,3,4,5的平均数=(1+2+3+4+5)=3,方差=[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2,此选项错误.故答案选B.10、C【分析】根据相似三角形面积比等于相似比的平方即可解题【详解】∵相似三角形面积比等于相似比的平方故选C【点睛】本题考查相似三角形的性质,根据根据相似三角形面积比等于相似比的平方列出式子即可二、填空题(每小题3分,共24分)11、a<b<c【分析】先求出二次函数的对称轴,再根据点到对称轴的距离远近即可解答.【详解】由二次函数的解析式可知,对称轴为直线x=-1,且图象开口向上,∴点离对称轴距离越远函数值越大,∵-1-(-2)=1,1-(-1)=2,2-(-1)=3,∴a<b<c,故答案为:a<b<c.【点睛】此题主要考查二次函数图象上点的坐标特征,熟练掌握二次函数的顶点式以及图象上点的坐标特征是解答的关键.12、【分析】连接BD,BF,根据S阴影=S△ABD+S扇形BDF+S△BEF-S矩形ABCD-S扇形BCE即可得出答案.【详解】如图,连接BD,BF,在矩形ABCD中,∠A=90°,AB=3,AD=BC=2,∴BD=,S矩形ABCD=AB×BC=3×2=6∵矩形BEFG是由矩形ABCD绕点B顺时针旋转90°得到的∴BF=BD=,∠DBF=90°,∠CBE=90°,S矩形BEFG=S矩形ABCD=6则S阴影=S△ABD+S扇形BDF+S△BEF-S矩形ABCD-S扇形BCE=S矩形ABCD+S扇形BDF+S矩形BEFG-S矩形ABCD-S扇形BCE==故答案为:.【点睛】本题考查了与扇形有关的面积计算,熟练掌握扇形面积公式,将图形进行分割是解题的关键.13、,【详解】解:由图象可知对称轴x=2,与x轴的一个交点横坐标是5,它到直线x=2的距离是3个单位长度,所以另外一个交点横坐标是-1.

所以,.

故答案是:,.【点睛】考查抛物线与x轴的交点,抛物线与x轴两个交点的横坐标的和除以2后等于对称轴.14、(0,+1)【分析】将△OAN绕点O逆时针旋转90°,点N对应N′,点A对应A′,由旋转和正方形的性质即可得出点A′与点C重合,以及F、C、N′共线,通过角的计算即可得出∠N'OF=∠NOF=45°,结合ON′=ON、OF=OF即可证出△N'OF≌△NOF(SAS),由此即可得出N′M=NF=1,再由△OCF≌△OAN即可得出CF=N,通过边与边之间的关系即可得出BN=BF,利用勾股定理即可得出BN=BF=,设OC=a,则N′F=1CF=1(a﹣),由此即可得出关于a的一元一次方程,解方程即可得出点C的坐标.【详解】将△OAN绕点O逆时针旋转90°,点N对应N′,点A对应A′,如图所示.∵OA=OC,∴OA′与OC重合,点A′与点C重合.∵∠OCN′+∠OCF=180°,∴F、C、N′共线.∵∠COA=90°,∠FON=45°,∴∠COF+∠NOA=45°.∵△OAN旋转得到△OCN′,∴∠NOA=∠N′OC,∴∠COF+∠CON'=45°,∴∠N'OF=∠NOF=45°.在△N'OF与△NOF中,,∴△N′OF≌△NOF(SAS),∴NF=N'F=1.∵△OCF≌△OAN,∴CF=AN.又∵BC=BA,∴BF=BN.又∠B=90°,∴BF1+BN1=NF1,∴BF=BN=.设OC=a,则CF=AN=a﹣.∵△OAN旋转得到△OCN′,∴AN=CN'=a﹣,∴N'F=1(a﹣),又∵N'F=1,∴1(a﹣)=1,解得:a=+1,∴C(0,+1).故答案是:(0,+1).【点睛】本题考查了反比例函数综合题,涉及到了全等三角形的判定与性质、旋转的性质以及勾股定理,解题的关键是找出关于a的一元一次方程.本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边角关系是关键.15、3【分析】根据反比例函数系数k的几何意义得到:△MNO的面积为|k|,即可得出答案.【详解】∵反比例函数的解析式为,∴k=6,∵点M在反比例函数图象上,MN⊥y轴于N,∴S△MNO=|k|=3,故答案为:3【点睛】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.16、4【解析】先根据圆锥的侧面展开图,扇形的弧长等于该圆锥的底面圆的周长,求出OA,最后用勾股定理即可得出结论.【详解】设圆锥底面圆的半径为r,∵AC=6,∠ACB=120°,∴=2πr,∴r=2,即:OA=2,在Rt△AOC中,OA=2,AC=6,根据勾股定理得,OC==4,故答案为4.【点睛】本题考查了扇形的弧长公式,圆锥的侧面展开图,勾股定理,求出OA的长是解本题的关键.17、答案不唯一,如【解析】试题分析:根据一元二次方程的根的定义即可得到结果.答案不唯一,如考点:本题考查的是方程的根的定义点评:解答本题关键的是熟练掌握方程的根的定义:方程的根就是使方程左右两边相等的未知数的值.18、【分析】根据直角三角形的性质求出OC、BC,根据扇形面积公式计算即可.【详解】解:∵∠BOC=60°,∠BCO=90°,∴∠OBC=30°,∴OC=OB=1则边BC扫过区域的面积为:故答案为.【点睛】考核知识点:扇形面积计算.熟记公式是关键.三、解答题(共66分)19、(1);(2)值有或【分析】(1)过点作于点,根据,可求出△AOB的面积8,由等腰三角形的三线合一可知△AOD的面积为4,根据反比例函数k的几何意义几何求出k;

(2)分两种情况讨论:①当边的中点在的图象上,由条件可知,即可得到C点坐标为,从而可求得m;②当边的中点在的图象上,过点作于点,由条件可知,,因此中点,从而可求得m.【详解】解:(1)过点作于点,如图1∵,∴,∴,,即(2)①当边的中点在的图象上,如图2∵,∴,,点,即∴②当边的中点在的图象上,过点作于点,如图3∵,,∴中点即∴综上所述,符合条件的值有或【点睛】本题考查了用待定系数法求反比例函数的解析式,掌握直角三角形、等边三角形的性质以及分类讨论思想是解题的关键.20、大树的高度为(9+3)米【分析】根据矩形性质得出,再利用锐角三角函数的性质求出问题即可.【详解】解:如图,过点D作DG⊥BC于G,DH⊥CE于H,则四边形DHCG为矩形.故DG=CH,CG=DH,在中,∵∠DAH=30°,AD=6米,∴DH=3米,AH=3米,∴CG=3米,设BC米,在中,∠BAC=45°,∴AC米,∴DG=(3+)米,BG=()米,在中,∵BG=DG·tan30°,∴(3)×,解得:9+3,∴BC=(9+3)米.答:大树的高度为(9+3)米.【点睛】本题考查了仰角、坡角的定义,解直角三角形的应用,能借助仰角构造直角三角形,并结合图形利用三角函数解直角三角形是解题的关键.21、(1)见解析;(2);(3)A.,B..【分析】(1)根据旋转性质证得,从而证得绪论;(2)连接、,过点作,根据旋转性质结合三角形三线合一的性质证得,再证得四边形是矩形,从而求得结论;(3)A.设,根据旋转性质结合两边对应成比例且夹角相等证得,利用相似三角形对应边成比例再结合勾股定理即可求得答案;B.作交直线于点,根据旋转性质利用AAS证得,证得OP是线段的中垂线,根据旋转性质结合两边对应成比例且夹角相等证得,利用相似三角形对应高的比等于相似比再结合勾股定理即可求得答案;【详解】(1)由题意得:,,由旋转性质得:,∵四边形是矩形(2)连接、,过点作于N,由旋转得:,∵,,∵ON⊥D,∠=∠,∴四边形是矩形,∴,∴;(3)A.如图,连接,,,由旋转的性质得:∠BO=∠,BO=O,,∴,∴,,,设,则,B.如图,过点作AG∥交直线于点G,过点O作交直线于点,连接OP,∵AG∥,,四边形是正方形,由旋转可知:,,,,,,,,,,,,在和中,,,又∵,,,,,,,又∵,,,,,设,则,,在中,由勾股定理可得:,.【点睛】本题考查四边形综合题、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质、、勾股定理、矩形的性质、线段的垂直平分线的性质和判定等知识,解题的关键是准确寻找全等三角形解决问题.22、门票价格应是20元/人.【分析】根据参观人数×票价=40000元,即可求出每周应限定参观人数以及门票价格.【详解】根据确保每周4万元的门票收入,得xy=40000即x(-500x+1)=40000x2-24x+80=0解得x1=20,x2=4把x1=20,x2=4分别代入y=-500x+1中得y1=2000,y2=10000因为控制参观人数,所以取x=20,答:门票价格应是20元/人.【点睛】考查了一元二次方程的应用,解题的关键是能够根据题意列出方程,难度不大.23、(1)(x>0);(2)1<x<1.【分析】(1)把A(m,6),B(1,n)两点分别代入y=﹣2x+8可求出m、n的值,确定A点坐标为(1,6),B点坐标为(1,2),然后利用待定系数法求反比例函数的解析式;(2)观察函数图象得到当1<x<1,一次函数的图象在反比例函数图象上方.【详解】(1)把A(m,6),B(1,n)两点分别代入y=﹣2x+8得6=﹣2m+8,n=﹣2×1+8,解得m=1,n=2,∴A点坐标为(1,6),B点坐标为(1,2),把A(1,6)代入y=(x>0)求得k=1×6=6,∴反比例函数解析式为(x>0);(2)在第一象限内,一次函数值大于反比例函数值时自变量x的取值范围是1<x<1.【点睛】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数的解析式.也考查了待定系数法求函数的解析式以及观察图象的能力.24、(1)A(0,4),C(3,1);(2)详见解析【分析】(1)直接从平面直角坐标系写出点A和点C的坐标即可;(2)根据找出点A、B、C绕点C顺时针方向旋转90°后的对应点A'、B'、C'的位置,然后顺次连接即可.【详解】解:(1)由图可得,A(0,4)、C(3,1);(2)如图,△A'B'C'即为所求.【点睛】本题考查了

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论