版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,四点在⊙上,.则的度数为()A. B. C. D.2.如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,⊙O的直径AD=6,则BD的长为()A.2 B.3 C.2 D.33.如图是由6个大小相同的小正方体叠成的几何体,则它的主视图是()A. B.C. D.4.已知二次函数y=ax2+bx+c的图象大致如图所示,则下列关系式中成立的是()A.a>0 B.b<0 C.c<0 D.b+2a>05.若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),则抛物线y=ax2+bx的对称轴为()A.直线x=1 B.直线x=﹣2 C.直线x=﹣1 D.直线x=﹣46.如图所示的几何体,它的俯视图是()A. B.C. D.7.一元二次方程中至少有一个根是零的条件是()A.且 B. C.且 D.8.在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A. B. C. D.9.已知,若,则它们的周长之比是()A.4:9 B.16:81C.9:4 D.2:310.在﹣3、﹣2、﹣1、0、1、2这六个数中,任取两个数,恰好和为﹣1的概率为()A. B. C. D.11.⊙O是半径为1的圆,点O到直线L的距离为3,过直线L上的任一点P作⊙O的切线,切点为Q;若以PQ为边作正方形PQRS,则正方形PQRS的面积最小为()A.7 B.8 C.9 D.1012.下列事件为必然事件的是()A.打开电视机,正在播放新闻 B.任意画一个三角形,其内角和是C.买一张电影票,座位号是奇数号 D.掷一枚质地均匀的硬币,正面朝上二、填空题(每题4分,共24分)13.如图,已知反比例函数y=(k为常数,k≠0)的图象经过点A,过A点作AB⊥x轴,垂足为B,若△AOB的面积为1,则k=________________.14.已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是________cm2.15.如图,△ABC中,AB>AC,D,E两点分别在边AC,AB上,且DE与BC不平行.请填上一个你认为合适的条件:_____,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)16.已知扇形的弧长为4π,圆心角为120°,则它的半径为_____.17.如图,BD是⊙O的直径,∠CBD=30°,则∠A的度数为_____.18.若关于x的一元二次方程x2+mx+m2﹣19=0的一个根是﹣3,则m的值是_____.三、解答题(共78分)19.(8分)点为图形上任意一点,过点作直线垂足为,记的长度为.定义一:若存在最大值,则称其为“图形到直线的限距离”,记作;定义二:若存在最小值,则称其为“图形到直线的基距离”,记作;(1)已知直线,平面内反比例函数在第一象限内的图象记作则.(2)已知直线,点,点是轴上一个动点,的半径为,点在上,若求此时的取值范围,(3)已知直线恒过定点,点恒在直线上,点是平面上一动点,记以点为顶点,原点为对角线交点的正方形为图形,若请直接写出的取值范围.20.(8分)图①、图②均是6×6的正方形网格,每个小正方形的顶点称为格点.线段AB的端点均在格点上,按下列要求画出图形.(1)在图①中找到两个格点C,使∠BAC是锐角,且tan∠BAC=;(2)在图②中找到两个格点D,使∠ADB是锐角,且tan∠ADB=1.21.(8分)如图,破残的圆形轮片上,弦AB的垂直平分线交AB于C,交弦AB于D.(1)求作此残片所在的圆(不写作法,保留作图痕迹);(2)若AB=24cm,CD=8cm,求(1)中所作圆的半径.22.(10分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,1.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是1的倍数的概率(用画树状图或列表等方法求解).23.(10分)如图,在△ABC中,AB=AC,∠A=30°,AB=10,以AB为直径的⊙O交BC于点D,交AC于点E,连接DE,过点B作BP平行于DE,交⊙O于点P,连接CP、OP.(1)求证:点D为BC的中点;(2)求AP的长度;(3)求证:CP是⊙O的切线.24.(10分)如图,已知抛物线y=ax2+bx+3(a≠0)经过点A(1,0)和点B(3,0),与y轴交于点C.(1)求此抛物线的解析式;(2)若点P是直线BC下方的抛物线上一动点(不点B,C重合),过点P作y轴的平行线交直线BC于点D,求PD的长度最大时点P的坐标.(3)设抛物线的对称轴与BC交于点E,点M是抛物线的对称轴上一点,N为y轴上一点,是否存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形?如果存在,请直接写出点M的坐标;如果不存在,请说明理由.25.(12分)如图,在中,是上的高,.(1)求证:;(2)若,求的长.26.已知在平面直角坐标中,点A(m,n)在第一象限内,AB⊥OA且AB=OA,反比例函数y=的图象经过点A,(1)当点B的坐标为(4,0)时(如图1),求这个反比例函数的解析式;(2)当点B在反比例函数y=的图象上,且在点A的右侧时(如图2),用含字母m,n的代数式表示点B的坐标;(3)在第(2)小题的条件下,求的值.
参考答案一、选择题(每题4分,共48分)1、B【分析】连接BO,由可得,则,由圆周角定理,得,即可得到答案.【详解】解:如图,连接BO,则∵,∴,∴,∵,∴;故选:B.【点睛】本题考查了垂径定理,以及圆周角定理,解题的关键是正确作出辅助线,得到.2、D【分析】连接OB,如图,利用弧、弦和圆心角的关系得到,则利用垂径定理得到OB⊥AC,所以∠ABO=∠ABC=60°,则∠OAB=60°,再根据圆周角定理得到∠ABD=90°,然后利用含30度的直角三角形三边的关系计算BD的长.【详解】连接OB,如图:
∵AB=BC,
∴,
∴OB⊥AC,
∴OB平分∠ABC,
∴∠ABO=∠ABC=×120°=60°,
∵OA=OB,
∴∠OAB=60°,
∵AD为直径,
∴∠ABD=90°,
在Rt△ABD中,AB=AD=3,
∴BD=.故选D.【点睛】考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了垂径定理和圆周角定理.3、C【分析】找到从正面看所得到的图形即可.【详解】解:它的主视图是:故选:C.【点睛】本题考查了三视图的知识,掌握主视图是解题的关键.4、D【解析】分析:根据抛物线的开口、对称轴及与y轴的交点的位置,可得出a<1、c>1、b>﹣2a,进而即可得出结论.详解:∵抛物线开口向下,对称轴大于1,与y轴交于正半轴,∴a<1,﹣>1,c>1,∴b>﹣2a,∴b+2a>1.故选D.点睛:本题考查了二次函数图象与系数的关系,根据抛物线的对称轴大于1找出b>﹣2a是解题的关键.5、C【解析】∵一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),∴﹣2a+b=0,即b=2a.∴抛物线y=ax2+bx的对称轴为直线.故选C.6、D【分析】根据俯视图的确定方法,找到从上面看所得到的图形即是所求图形.【详解】从几何体上面看,有三列,第一列2个,第二列1个位于第2层,第三列1个位于第2层.故选:D.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.7、D【分析】代入,求得一元二次方程需满足的条件.【详解】由题意得,一元二次方程存在一个根代入到中解得故答案为:D.【点睛】本题考查了一元二次方程的解法,掌握解一元二次方程的方法是解题的关键.8、C【解析】试题分析:选项A:一次函数图像经过一、二、三象限,因此a>0,b>0,对于二次函数y=ax2﹣bx图像应该开口向上,对称轴在y轴右侧,不合题意,此选项错误;选项B:一次函数图像经过一、二、四象限,因此a<0,b>0,对于二次函数y=ax2﹣bx图像应该开口向下,对称轴在y轴左侧,不合题意,此选项错误;选项C:一次函数图像经过一、二、三象限,因此a>0,b>0,对于二次函数y=ax2﹣bx图像应该开口向上,对称轴在y轴右侧,符合题意,此选项正确;选项D:一次函数图像经过一、二、三象限,因此a>0,b>0,对于二次函数y=ax2﹣bx图像应该开口向上,对称轴在y轴右侧,不合题意,此选项错误.故选C.考点:1一次函数图像;2二次函数图像.9、A【分析】根据相似三角形周长的比等于相似比解答即可.【详解】∵△ABC∽△DEF,AC:DF=4:9,
∴△ABC与△DEF的相似比为4:9,
∴△ABC与△DEF的周长之比为4:9,
故选:A.【点睛】此题考查相似三角形性质,掌握相似三角形周长的比等于相似比是解题的关键.10、D【分析】画树状图展示所有15种等可能的结果数,找出恰好和为-1的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有15种等可能的结果数,其中恰好和为-1的结果数为3,所以任取两个数,恰好和为-1的概率=.故选:D.【点睛】本题考查的是概率的问题,能够用树状图解决简单概率问题是解题的关键.11、B【分析】连接OQ、OP,作于H,如图,则OH=3,根据切线的性质得,利用勾股定理得到,根据垂线段最短,当OP=OH=3时,OP最小,于是PQ的最小值为,即可得到正方形PQRS的面积最小值1.【详解】解:连接OQ、OP,作于H,如图,则OH=3,∵PQ为的切线,∴在Rt中,,当OP最小时,PQ最小,正方形PQRS的面积最小,当OP=OH=3时,OP最小,所以PQ的最小值为,所以正方形PQRS的面积最小值为1故选B12、B【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【详解】∵A,C,D选项为不确定事件,即随机事件,故不符合题意.∴一定发生的事件只有B,任意画一个三角形,其内角和是,是必然事件,符合题意.故选B.【点睛】本题考查的是对必然事件的概念的理解.解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.用到的知识点为:必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题(每题4分,共24分)13、-1【解析】试题解析:设点A的坐标为(m,n),因为点A在y=的图象上,所以,有mn=k,△ABO的面积为=1,∴=1,∴=1,∴k=±1,由函数图象位于第二、四象限知k<0,∴k=-1.考点:反比例外函数k的几何意义.14、15π【解析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.【详解】设圆锥母线长为l,∵r=3,h=4,∴母线l=,∴S侧=×2πr×5=×2π×3×5=15π,故答案为15π.【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.15、∠B=∠1或【解析】此题答案不唯一,注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.【详解】此题答案不唯一,如∠B=∠1或.∵∠B=∠1,∠A=∠A,∴△ADE∽△ABC;∵,∠A=∠A,∴△ADE∽△ABC;故答案为∠B=∠1或【点睛】此题考查了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似,要注意正确找出两三角形的对应边、对应角,根据判定定理解题.16、6【解析】根据弧长公式可得.【详解】解:∵l=nπr180,∵l=4π,n=120∴4π=120πr180,
解得:r=6,
【点睛】本题考查弧长的计算公式,牢记弧长公式是解决本题的关键.17、60°【解析】解:∵BD是⊙O的直径,∴∠BCD=90°(直径所对的圆周角是直角),∵∠CBD=30°,∴∠D=60°(直角三角形的两个锐角互余),∴∠A=∠D=60°(同弧所对的圆周角相等);故答案是:60°18、-2或1.【解析】将x=-3代入原方程,得9-3m+m2-19=0,m2-3m-10=0,(m-1)(m+2)=0,m=-2或1.故答案为-2或1.点睛:已知方程的一个实数根,要求方程中的未知参数,把根代入方程即可.三、解答题(共78分)19、(1);(2)或;(3)或【分析】(1)作直线:平行于直线,且与H相交于点P,连接PO并延长交直线于点Q,作PM⊥x轴,根据只有一个交点可求出b,再联立求出P的坐标,从而判断出PQ平分∠AOB,再利用直线表达式求A、B坐标证明OA=OB,从而证出PQ即为最小距离,最后利用勾股定理计算即可;(2)过点作直线,可判断出上的点到直线的最大距离为,然后根据最大距离的范围求出TH的范围,从而得到FT的范围,根据范围建立不等式组求解即可;(3)把点P坐标带入表达式,化简得到关于a、b的等式,从而推出直线的表达式,根据点E的坐标可确定点E所在直线表达式,再根据最小距离为0,推出直线一定与图形K相交,从而分两种情况画图求解即可.【详解】解:(1)作直线:平行于直线,且与H相交于点P,连接PO并延长交直线于点Q,作PM⊥x轴,∵直线:与H相交于点P,∴,即,只有一个解,∴,解得,∴,联立,解得,即,∴,且点P在第一、三象限夹角的角平分线上,即PQ平分∠AOB,∴为等腰直角三角形,且OP=2,∵直线:,∴当时,,当时,,∴A(-2,0),B(0,-2),∴OA=OB=2,又∵OQ平分∠AOB,∴OQ⊥AB,即PQ⊥AB,∴PQ即为H上的点到直线的最小距离,∵OA=OB,∴,∴AQ=OQ,∴在中,OA=2,则OQ=,∴,即;(2)由题过点作直线,则上的点到直线的最大距离为,∵,即,∴,由题,则,∴,又∵,∴,解得或;(3)∵直线恒过定点,∴把点P代入得:,整理得:,∴,化简得,∴,又∵点恒在直线上,∴直线的表达式为:,∵,∴直线一定与以点为顶点,原点为对角线交点的正方形图形相交,∵,∴点E一定在直线上运动,情形一:如图,当点E运动到所对顶点F在直线上时,由题可知E、F关于原点对称,∵,∴,把点F代入得:,解得:,∵当点E沿直线向上运动时,对角线变短,正方形变小,无交点,∴点E要沿直线向下运动,即;情形二:如图,当点E运动到直线上时,把点E代入得:,解得:,∵当点E沿直线向下运动时,对角线变短,正方形变小,无交点,∴点E要沿直线向上运动,即,综上所述,或.【点睛】本题考查新型定义题,弄清题目含义,正确画出图形是解题的关键.20、(1)如图①点C即为所求作的点;见解析;(2)如图②,点D即为所求作的点,见解析.【分析】(1)在图①中找到两个格点C,使∠BAC是锐角,且tan∠BAC=;(2)在图②中找到两个格点D,使∠ADB是锐角,且tan∠ADB=1.【详解】解:(1)如图①点C即为所求作的点;(2)如图②,点D即为所求作的点.【点睛】本题考查了作图——应用与设计作图,解直角三角形.解决本题的关键是准确画图.21、(1)答案见解析;(2)13cm【分析】(1)根据垂径定理,即可求得圆心;(2)连接OA,根据垂径定理与勾股定理,即可求得圆的半径长.【详解】解:(1)连接BC,作线段BC的垂直平分线交直线CD与点O,以点O为圆心,OA长为半径画圆,圆O即为所求;(2)如图,连接OA∵OD⊥AB∴AD=AB=12cm设圆O半径为r,则OA=r,OD=r-8直角三角形AOD中,AD2+OD2=OA2∴122+(r-8)2=r2∴r=13∴圆O半径为13cm【点睛】本题考查了垂径定理的应用,解答本题的关键是熟练掌握圆中任意两条弦的垂直平分线的交点即为圆心.22、(1);(2)见解析,【分析】(1)由标有数字1、2、1的1个转盘中,奇数的有1、1这2个,利用概率公式计算可得;(2)根据题意列表得出所有等可能的情况数,得出这两个数字之和是1的倍数的情况数,再根据概率公式即可得出答案.【详解】(1)∵在标有数字1、2、1的1个转盘中,奇数的有1、1这2个,∴指针所指扇形中的数字是奇数的概率为.故答案为:;(2)列表如下:1211(1,1)(2,1)(1,1)2(1,2)(2,2)(1,2)1(1,1)(2,1)(1,1)由表可知,所有等可能的情况数为9种,其中这两个数字之和是1的倍数的有1种,所以这两个数字之和是1的倍数的概率为.【点睛】本题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23、(1)BD=DC;(2)1;(3)详见解析.【分析】(1)连接AD,由圆周角定理可知∠ADB=90°,证得结论;
(2)根据等腰三角形的性质得到AD平分∠BAC,即∠BAD=∠CAD,可得,则BD=DE,所以BD=DE=DC,得到∠DEC=∠DCE,在等腰△ABC中可计算出∠ABC=71°,故∠DEC=71°,再由三角形内角和定理得出∠EDC的度数,再根据BP∥DE可知∠PBC=∠EDC=30°,进而得出∠ABP的度数,然后利用OB=OP,可知∠OBP=∠OPB,由三角形内角和定理即可得出∠BOP=90°,则△AOP是等腰直角三角形,易得AP的长度;
(3)设OP交AC于点G,由∠BOP=90°可知∠AOG=90°,在Rt△AOG中,由∠OAG=30°可得=,由于==,则=,根据三角形相似的判定可得到△AOG∽△CPG,由相似三角形形的性质可知∠GPC=∠AOG=90°,然后根据切线的判定定理即可得到CP是⊙O的切线.【详解】(1)BD=DC.理由如下:如图1,连接AD,∵AB是直径,∴∠ADB=90°,∴AD⊥BC.(2)如图1,连接AP.∵AD是等腰△ABC底边上的中线,∴∠BAD=∠CAD,∴∴BD=DE.∴BD=DE=DC,∴∠DEC=∠DCE,△ABC中,AB=AC,∠A=30°,∴∠DCE=∠ABC=(180°﹣30°)=71°,∴∠DEC=71°,∴∠EDC=180°﹣71°﹣71°=30°,∵BP∥DE,∴∠PBC=∠EDC=30°,∴∠ABP=∠ABC﹣∠PBC=71°﹣30°=41°,∵OB=OP,∴∠OBP=∠OPB=41°,∴∠BOP=90°.∴△AOP是等腰直角三角形.∵AO=AB=1.∴AP=AO=1;(3)设OP交AC于点G,如图1,则∠AOG=∠BOP=90°,在Rt△AOG中,∠OAG=30°,∴=,又∵==,∴=,∴=.又∵∠AGO=∠CGP,∴△AOG∽△CPG,∴∠GPC=∠AOG=90°,∴OP⊥PC,∴CP是⊙O的切线.【点睛】本题考查了圆的综合题;掌握切线的性质,运用切线的判定定理证明圆的切线;运用圆周角定理和相似三角形的判定与性质解决圆中角度与线段的计算;同时记住等腰直角三角形的性质以及含30度的直角三角形三边的关系是关键.24、(1)y=x2﹣4x+1;(2)PD的长度最大时点P的坐标为(,﹣);(1)点M的坐标为M1(2,1),M2(2,1﹣2),M1(2,1+2)【分析】(1)用待定系数法法求解;把已知点的坐标分别代入解析式可得;(2)设P(m,m2﹣4m+1),将点B(1,0)、C(0,1)代入得直线BC解析式为yBC=﹣x+1.过点P作y轴的平行线交直线BC于点D,则D(m,﹣m+1),PD==﹣(m﹣)2+,求函数最值可得.(1)设存在以点C、E、M、N为顶点的四边形是菱形.根据题意,点E(2,1),EF=CF=2,求出EC=2,根据菱形性质,ME=EC=2,可求出M的坐标;注意当EM=EF=2时,M(2,1).【详解】解:(1)∵抛物线y=ax2+bx+1(a≠0)经过点A(1,0)和点B(1,0),与y轴交于点C,∴,解得,∴抛物线解析式为y=x2﹣4x+1;(2)如图:设P(m,m2﹣4m+1),将点B(1,0)、C(0,1)代入得直线B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年汽车改装配件采购合同协议
- 2026年绿色物流新能源运输合同协议
- 个人房屋转让协议书2026年租赁合同
- 家装公司水电培训课件
- 家用煤气安全培训记录课件
- 培训讲师自我介绍
- 《酒水知识与酒吧管理》 课件 第5、6章 鸡尾酒、咖啡
- 企业内部沟通与信息共享(标准版)
- 《酒水知识与酒吧管理》 课件 第六章 咖啡
- 幼儿培训安全出口课件
- 2024年苏教版小学二年级上册数学期末测试试卷(含答案)
- 2026年西昌市人民医院公开招聘临床护士的备考题库及答案详解参考
- 2026年雅安市公安局监察留置看护支队招聘备考题库有答案详解
- 老人水电维修合同范本
- 黑龙江省佳木斯市一中2026届高二上数学期末监测模拟试题含解析
- 河南省部分重点中学2025-2026年高三上学期11月质量检测语文试题(解析版)
- 2026年普通高中学业水平合格性考试思想政治(必修1+必修2)模块综合测评试卷(含答案解析)
- DB50-T 1502-2023 黄连林下种植技术规程
- 2024统编版二年级道德与法治上册 第四单元 我爱我们的祖国(第13~16课)教案(表格式)
- 安置房屋安置协议书
- 2026年度医院感染知识培训计划、培训内容
评论
0/150
提交评论