湖北省老河口市2022-2023学年数学九年级第一学期期末联考试题含解析_第1页
湖北省老河口市2022-2023学年数学九年级第一学期期末联考试题含解析_第2页
湖北省老河口市2022-2023学年数学九年级第一学期期末联考试题含解析_第3页
湖北省老河口市2022-2023学年数学九年级第一学期期末联考试题含解析_第4页
湖北省老河口市2022-2023学年数学九年级第一学期期末联考试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1 B.x2+2x+1 C.x2﹣2x+1 D.x(x﹣2)﹣(x﹣2)2.如图所示,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=110°,则α等于()A.20° B.30° C.40° D.50°3.将抛物线向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线解析式为()A. B.C. D.4.如图,菱形的边长是,动点同时从点出发,以的速度分别沿运动,设运动时间为,四边形的面积为,则与的函数关系图象大致为()A. B.C. D.5.如图,是的外接圆,是直径.若,则等于()A. B. C. D.6.有一组数据5,3,5,6,7,这组数据的众数为()A.3 B.6 C.5 D.77.下列四张印有汽车品牌标志图案的卡片中,是中心对称图形的卡片是()A. B. C. D.8.在△ABC中,点D、E分别在边AB、AC上,DE∥BC,AD:DB=4:5,下列结论中正确的是A. B. C. D.9.关于的一元二次方程根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.根的情况无法判断10.如果2是方程x2-3x+k=0的一个根,则常数k的值为()A.2 B.1 C.-1 D.-211.用配方法解方程,方程应变形为()A. B. C. D.12.△ABC中,∠C=Rt∠,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB、BC分别交于点E、D,则AE的长为()A. B. C. D.二、填空题(每题4分,共24分)13.《算学宝鉴》中记载了我国南宋数学家杨辉提出的一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步?大意是“一个矩形田地的面积等于864平方步,它的宽比长少12步,问长与宽各多少步?”若设矩形田地的宽为x步,则所列方程为__________.14.已知抛物线,过点(0,2),则c=__________.15.方程(x+5)2=4的两个根分别为_____.16.将一副三角尺按如图所示的方式叠放在一起,边AC与BD相交于点E,则的值等于_________.17.如图,从一块直径是的圆形铁皮上剪出一个圆心角是的扇形,如果将剪下来的扇形围成一个圆锥,那么圆锥的底面圆的半径为___________.18.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在,那么估计盒子中小球的个数是_______.三、解答题(共78分)19.(8分)学校决定每班选取名同学参加全国交通安全日细节关乎生命安全文明出行主题活动启动仪式,班主任决定从名同学(小明、小山、小月、小玉)中通过抽签的方式确定名同学去参加该活动.抽签规则:将名同学的姓名分别写在张完全相同的卡片正面,把张卡片的背面朝上,洗匀后放在桌子上,王老师先从中随机抽取一张卡片,记下名字,再从剩余的张卡片中随机抽取一张,记下名字.(1)小刚被抽中是___事件,小明被抽中是____事件(填不可能、必然、随机),第一次抽取卡片抽中是小玉的概率是______;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出小月被抽中的概率.20.(8分)如图,某农户计划用长12m的篱笆围成一个“日”字形的生物园饲养两种不同的家禽,生物园的一面靠墙,且墙的可利用长度最长为7m.(1)若生物园的面积为9m2,则这个生物园垂直于墙的一边长为多少?(2)若要使生物园的面积最大,该怎样围?21.(8分)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被哦感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?(3)轮(为正整数)感染后,被感染的电脑有________台.22.(10分)某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.(1)根据图示填写下表:班级中位数(分)众数(分)九(1)85九(2)100(2)通过计算得知九(2)班的平均成绩为85分,请计算九(1)班的平均成绩.(3)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好.(4)已知九(1)班复赛成绩的方差是70,请计算九(2)班的复赛成绩的方差,并说明哪个班的成绩比较稳定?23.(10分)“辑里湖丝”是世界闻名最好的蚕丝,是浙江省的传统丝织品,属于南浔特产,南浔某公司用辑丝为原料生产的新产品丝巾,其生产成本为20元/条.此产品在网上的月销售量y(万件)与售价x(元/件)之间的函数关系为y=﹣0.2x+10(由于受产能限制,月销售量无法超过4万件).(1)若该产品某月售价为30元/件时,则该月的利润为多少万元?(2)若该产品第一个月的利润为25万元,那么该产品第一个月的售价是多少?(3)第二个月,该公司将第一个月的利润25万元(25万元只计入第二个月成本)投入研发,使产品的生产成本降为18元/件.为保持市场占有率,公司规定第二个月产品售价不超过第一个月的售价.请计算该公司第二个月通过销售产品所获的利润w为多少万元?24.(10分)如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A(1,a),B(3,b)两点.(1)求反比例函数的表达式(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标(3)求△PAB的面积.25.(12分)箱子里有4瓶牛奶,其中有一瓶是过期的.现从这4瓶牛奶中任意抽取牛奶饮用,抽取任意一瓶都是等可能的.(1)若小芳任意抽取1瓶,抽到过期的一瓶的概率是;(2)若小芳任意抽取2瓶,请用画树状图或列表法求,抽出的2瓶牛奶中恰好抽到过期牛奶的概率.26.如图,已知直线AB与轴交于点C,与双曲线交于A(3,)、B(-5,)两点.AD⊥轴于点D,BE∥轴且与轴交于点E.(1)求点B的坐标及直线AB的解析式;(2)判断四边形CBED的形状,并说明理由.

参考答案一、选择题(每题4分,共48分)1、B【分析】原式各项分解后,即可做出判断.【详解】A、原式=(x+1)(x-1),含因式x-1,不合题意;

B、原式=(x+1)2,不含因式x-1,符合题意;

C、原式=(x-1)2,含因式x-1,不合题意;

D、原式=(x-2)(x-1),含因式x-1,不合题意,

故选:B.【点睛】此题考查因式分解-运用公式法,提公因式法,熟练掌握因式分解的方法是解题的关键.2、A【解析】由性质性质得,∠D′=∠D=90°,∠4=α,由四边形内角和性质得∠3=360°-90°-90°-110°=70°,所以∠4=90°-70°=20°.【详解】如图,因为四边形ABCD为矩形,所以∠B=∠D=∠BAD=90°,因为矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′,所以∠D′=∠D=90°,∠4=α,因为∠1=∠2=110°,所以∠3=360°-90°-90°-110°=70°,所以∠4=90°-70°=20°,所以α=20°.故选:A【点睛】本题考核知识点:旋转角.解题关键点:理解旋转的性质.3、B【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】将化为顶点式,得.将抛物线向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为,故选B.【点睛】本题考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.4、C【分析】根据题意可以求出各段对应的函数解析式,再根据函数解析式即可判断哪个选项是符合题意的,本题得以解决.【详解】解:∵菱形ABCD的边长为4cm,∠A=60°,动点P,Q同时从点A出发,都以1cms的速度分别沿A→B→C和A→D→C的路径向点C运动,

∴△ABD是等边三角形,

∴当0<x≤4时,

y=×4×4×sin60°−x•sin60°x=4−x2=x2+4;

当4<x≤8时,

y=×4×4×sin60°−×(8−x)×(8−x)×sin60°=−x2+4x−12=−(x−8)2+4;∴选项C中函数图像符合题意,故选:C.【点睛】本题考查动点问题的函数图象,解答本题的关键是明确题意,求出各段对应的函数解析式,利用数形结合的思想解答.5、C【解析】根据同弧所对的圆周角等于圆心角的一半可得:∠A=

∠BOC=40°.【详解】∵∠BOC=80°,

∴∠A=∠BOC=40°.

故选C.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6、C【分析】根据众数的概念求解.【详解】这组数据中1出现的次数最多,出现了2次,则众数为1.故选:C.【点睛】本题考查了众数的概念:一组数据中出现次数最多的数据叫做众数.7、C【解析】试题分析:由中心对称图形的概念可知,这四个图形中只有第三个是中心对称图形,故答案选C.考点:中心对称图形的概念.8、B【分析】根据平行线分线段成比例,相似三角形性质,以及合比性质,分别对每个选项进行判断,即可得到答案.【详解】解:如图,在△ABC中,DE∥BC,AD∶DB=4∶5,则∴△ADE∽△ABC,∴,故A错误;则,故B正确;则,故C错误;则,故D错误.故选择:B.【点睛】本题考查了相似三角形的性质,平行线分线段成比例,合比性质,解题的关键是熟练掌握平行线分线段成比例的性质.9、A【解析】若△>0,则方程有两个不等式实数根,若△=0,则方程有两个相等的实数根,若△<0,则方程没有实数根.求出△与零的大小,结果就出来了.【详解】解:∵△=,∴方程有两个不相等的实数根【点睛】本题主要考查根的判别式,掌握一元二次方程的根的判别式是关键.10、A【分析】把x=1代入已知方程列出关于k的新方程,通过解方程来求k的值.【详解】解:∵1是一元二次方程x1-3x+k=0的一个根,

∴11-3×1+k=0,

解得,k=1.

故选:A.【点睛】本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.11、D【分析】常数项移到方程的右边,两边配上一次项系数一半的平方,写成完全平方式即可得.【详解】解:∵,

∴,即,

故选:D.【点睛】本题考查配方法解一元二次方程,熟练掌握完全平方公式和配方法的基本步骤是解题的关键.12、C【分析】在Rt△ABC中,由勾股定理可直接求得AB的长;过C作CM⊥AB,交AB于点M,由垂径定理可得M为AE的中点,在Rt△ACM中,根据勾股定理得AM的长,从而得到AE的长.【详解】解:在Rt△ABC中,

∵AC=3,BC=4,

∴AB==1.

过C作CM⊥AB,交AB于点M,如图所示,

由垂径定理可得M为AE的中点,

∵S△ABC=AC•BC=AB•CM,且AC=3,BC=4,AB=1,

∴CM=,

在Rt△ACM中,根据勾股定理得:AC2=AM2+CM2,即9=AM2+()2,

解得:AM=,

∴AE=2AM=.

故选:C.【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.二、填空题(每题4分,共24分)13、【分析】如果设矩形田地的宽为x步,那么长就应该是(x+12)步,根据面积为864,即可得出方程.【详解】解:设矩形田地的宽为x步,那么长就应该是(x+12)步,根据面积公式,得:;故答案为:.【点睛】本题为面积问题,考查了由实际问题抽象出一元二次方程,掌握好面积公式即可进行正确解答;矩形面积=矩形的长×矩形的宽.14、2【分析】将点(0,2)代入原解析式解出c的值即可.【详解】∵抛物线,过点(0,2),∴,∴c=2,故答案为:2.【点睛】本题主要考查了抛物线的性质,熟练掌握相关概念是解题关键.15、x1=﹣7,x2=﹣3【分析】直接开平方法解一元二次方程即可.【详解】解:∵(x+5)2=4,∴x+5=±2,∴x=﹣3或x=﹣7,故答案为:x1=﹣7,x2=﹣3【点睛】本题主要考查一元二次方程的解法中的直接开平方法,要求理解直接开平方法的适用类型,以及能够针对不同类型的题选用合适的方法进行计算.16、【分析】如图(见解析),先根据等腰直角三角形的判定与性质可得,设,从而可得,再在中,利用直角三角形的性质、勾股定理可得,由此即可得出答案.【详解】如图,过点E作于点F,由题意得:,,是等腰直角三角形,,设,则,在中,,,,解得,则,故答案为:.【点睛】本题考查了等腰直角三角形的判定与性质、直角三角形的性质、勾股定理等知识点,通过作辅助线,构造两个直角三角形是解题关键.17、【分析】根据题意可知扇形ABC围成圆锥后的底面周长就是弧BC的弧长,再根据弧长公式和圆周长公式来求解.【详解】解:作于点,连结OA、BC,∵∠BAC=90°∴BC是直径,OB=OC,,圆锥的底面圆的半径故答案为:【点睛】本题考查了扇形围成圆锥形,圆锥的底面圆的周长就是原来扇形的弧长,找到它们的关系是解题的关键.18、1【解析】根据利用频率估计概率得到摸到黄球的概率为1%,然后根据概率公式计算n的值.【详解】解:根据题意得=1%,解得n=1,所以这个不透明的盒子里大约有1个除颜色外其他完全相同的小球.故答案为1.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.三、解答题(共78分)19、(1)不可能;随机;;(2).【分析】(1)根据随机事件和不可能事件的概念及概率公式解答可得;

(2)列举出所有情况,看所求的情况占总情况的多少即可.【详解】(1)小刚不在班主任决定的名同学(小明、小山、小月、小玉)之中,所以“小刚被抽中”是不可能事件;“小明被抽中”是随机事件,第一次抽取卡片有4种等可能结果,其中小玉被抽中的有1种结果,所以第一次抽取卡片抽中是小玉的概率是;故答案为:不可能、随机、;(2)解:A表示小明,B表示小山,C表示小月,D表示小玉,则画树状图为:共有12种等可能的结果数,其中抽到C有6种,∴P(抽中小月)=.【点睛】本题主要考查了树状图或列表法求概率,列表法可以不重复不遗漏地列出所有可能的结果,适用于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.20、(1)3m;(1)生物园垂直于墙的一边长为1m.平行于墙的一边长为6m时,围成生物园的面积最大,且为11m1【分析】(1)设垂直于墙的一边长为x米,则平行于墙的一边长为(11-3x)米,根据长方形的面积公式结合生物园的面积为9平方米,列出方程,解方程即可;(1)设围成生物园的面积为y,由题意可得:y=x(11﹣3x)且≤<4,从而求出y的最大值即可.【详解】设这个生物园垂直于墙的一边长为xm,(1)由题意,得x(11﹣3x)=9,解得,x1=1(不符合题意,舍去),x1=3,答:这个生物园垂直于墙的一边长为3m;(1)设围成生物园的面积为ym1.由题意,得,∵∴≤<4∴当x=1时,y最大值=11,11﹣3x=6,答:生物园垂直于墙的一边长为1m.平行于墙的一边长为6m时,围成生物园的面积最大,且为11m1.【点睛】本题主要考查一元二次方程的应用和二次函数的应用,解题的关键是正确解读题意,根据题目给出的条件,准确列出方程和二次函数解析式.21、(1)8;(2)会;(3).【分析】(1)根据题意列出一元二次方程,求解即可.(2)根据题意计算出3轮感染后被感染的电脑数,与700进行比较即可.(3)根据题中规律,写出函数关系式即可.【详解】(1)解:设每轮感染中平均每一台电脑会感染台电脑,依题意得:解得(舍去)(2)答:3轮感染后,被感染的电脑会超过700台.(3)由(1)得每轮感染中平均每一台电脑会感染8台电脑第一轮:被感染的电脑有台;第二轮:被感染的电脑有台;第三轮:被感染的电脑有台;故我们可以得出规律:轮(为正整数)感染后,被感染的电脑有台【点睛】本题考查了一元二次方程的实际应用和归纳总结题,掌握解一元二次方程的方法和找出关于n的函数关系式是解题的关键.22、(1)见解析;(2)85分;(3)九(1)班成绩好;(4)九(1)班成绩稳定.【解析】(1)观察图分别写出九(1)班和九(2)班5名选手的复赛成绩,然后根据中位数的定义和平均数的求法以及众数的定义求解即可;

(2)根据平均数计算即可;

(3)在平均数相同的情况下,中位数高的成绩较好;

(4)先根据方差公式分别计算两个班复赛成绩的方差,再根据方差的意义判断即可.【详解】解:(1)填表:班级中位数(分)众数(分)九(1)8585九(2)80100(2)=85答:九(1)班的平均成绩为85分(3)九(1)班成绩好些因为两个班级的平均数都相同,九(1)班的中位数高,所以在平均数相同的情况下中位数高的九(1)班成绩好.(4)S21班=[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70,S22班=[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160,因为160>70所以九(1)班成绩稳定.【点睛】考查了平均数、中位数、众数和方差的意义即运用.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.23、(1)该月的利润为40万元;(1)该产品第一个月的售价是45元;(3)该公司第二个月通过销售产品所获的利润w至少为13万元,最多获利润16.1万元.【分析】(1)根据题意销售量与售价的关系式代入值即可求解;(1)根据月利润等于销售量乘以单件利润即可求解;(3)根据根据(1)中的关系利用二次函数的性质即可求解.【详解】(1)根据题意,得:当x=30时,y=﹣0.1×30+10=4,4×10=40,答:该月的利润为40万元.(1)15=(x﹣10)(﹣0.1x+10),解得x1=45,x1=15(月销售量无法超过4万件,舍去).答:该产品第一个月的售价是45元.(3)∵由于受产能限制,月销售量无法超过4万件,且公司规定第二个月产品售价不超过第一个月的售价.∴30≤x≤45,w=y(x﹣18)﹣15=(﹣0.1x+10)(x﹣18)﹣15=﹣0.1x1+13.6x﹣105=﹣0.1(x﹣34)1+16.1.当30≤x≤45时,13≤w≤16.1.答:该公司第二个月通过销售产品所获的利润w至少为13万元,最多获利润16.1万元.【点睛】本题主要考查了二次函数的应用,解决本题的关键是掌握销售问题各个量之间的关系并熟练运用二次函数.24、(1)反比例函数的表达式y=,(2)点P坐标(,0),(3)S△PAB=1.1.【解析】(1)把点A(1,a)代入一次函数中可得到A点坐标,再把A点坐标代入反比例解析式中即可得到反比例函数的表达式;(2)作点D关于x轴的对称点D,连接AD交x轴于点P,此时PA+PB的值最小.由B可知D点坐标,再由待定系数法求出直线AD的解析式,即可得到点P的坐标;(3)由S△PAB=S△ABD﹣S△PBD即可求出△PAB的面积.解:(1)把点A(1,a)代入一次函数y=﹣x+4,得a=﹣1+4,

解得a=3,

∴A(1,3),

点A(1,3)代入反比例函数y=,

得k=3,

∴反比例函数的表达式y=,

(2)把B(3,b)代入y=得,b=1∴点B坐标(3,1);作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,

∴D(3,﹣1),设直线AD的解析式为y=mx+n,

把A,D两点代入得,,

解得m=﹣2,n=1,

∴直线AD的解析式为y=﹣2x+1,令y=0,得x=,

∴点P坐标(,0),(3)S△PAB=S△ABD﹣S△PBD=×2×2﹣×2×

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论