湖州市吴兴区2022-2023学年数学九年级第一学期期末质量跟踪监视试题含解析_第1页
湖州市吴兴区2022-2023学年数学九年级第一学期期末质量跟踪监视试题含解析_第2页
湖州市吴兴区2022-2023学年数学九年级第一学期期末质量跟踪监视试题含解析_第3页
湖州市吴兴区2022-2023学年数学九年级第一学期期末质量跟踪监视试题含解析_第4页
湖州市吴兴区2022-2023学年数学九年级第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.一个不透明的袋中装有2个红球和4个黄球,这些球除颜色外完全相同.从袋中随机摸出一个球,摸到黄球的概率是()A. B. C. D.2.已知点都在双曲线上,且,则的取值范围是()A. B. C. D.3.反比例函数(x<0)如图所示,则矩形OAPB的面积是()A.-4 B.-2 C.2 D.44.下列四个图形中,不是中心对称图形的是()A. B.C. D.5.如图,点D是△ABC的边BC上一点,∠BAD=∠C,AC=2AD,如果△ACD的面积为15,那么△ABD的面积为()A.15 B.10 C.7.5 D.56.在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是G,过点B作BE⊥CG,垂足为E,且在AD上,BE交PC于点F,那么下列选项正确的是()①BP=BF;②如图1,若点E是AD的中点,那么△AEB≌△DEC;③当AD=25,且AE<DE时,则DE=16;④在③的条件下,可得sin∠PCB=;⑤当BP=9时,BE∙EF=108.A.①②③④ B.①②④⑤ C.①②③⑤ D.①②③④⑤7.如图,的直径,是上一点,点平分劣弧,交于点,,则图中阴影部分的面积等于()A. B. C. D.8.如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,使点P′在△ABC内,已知∠AP′B=135°,若连接P′C,P′A:P′C=1:4,则P′A:P′B=()A.1:4 B.1:5 C.2: D.1:9.如图,在菱形ABCD中,于E,,,则菱形ABCD的周长是A.5 B.10 C.8 D.1210.抛物线y=x2+6x+9与x轴交点的个数是()A.0 B.1 C.2 D.3二、填空题(每小题3分,共24分)11.二次函数的图象如图所示,则点在第__________象限.12.如图,△ABC中,AE交BC于点D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,则DE的长等于__________________.13.已知抛物线y=2x2﹣5x+3与y轴的交点坐标是_____.14.如图,扇形OAB中,∠AOB=60°,OA=4,点C为弧AB的中点,D为半径OA上一点,点A关于直线CD的对称点为E,若点E落在半径OA上,则OE=______.15.抛物线的顶点坐标为______.16.(2016湖北省咸宁市)如图,边长为4的正方形ABCD内接于点O,点E是上的一动点(不与A、B重合),点F是上的一点,连接OE、OF,分别与AB、BC交于点G,H,且∠EOF=90°,有以下结论:①;②△OGH是等腰三角形;③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为.其中正确的是________(把你认为正确结论的序号都填上).17.如图,四边形是菱形,,对角线,相交于点,于,连接,则=_________度.18.如图,点A,B,C都在⊙O上∠AOC=130°,∠ACB=40°,∠AOB=_____,弧BC=_____.三、解答题(共66分)19.(10分)某校薛老师所带班级的全体学生每两人都握一次手,共握手1540次,求薛老师所带班级的学生人数.20.(6分)解方程:x2-4x-7=0.21.(6分)一只不透明的袋子中,装有2个白球,1个红球,1个黄球,这些球除颜色外都相同.请用列表法或画树形图法求下列事件的概率:(1)搅匀后从中任意摸出1个球,恰好是白球.(2)搅匀后从中任意摸出2个球,2个都是白球.(3)再放入几个除颜色外都相同的黑球,搅匀后从中任意摸出1个球,恰好是黑球的概率为,求放入了几个黑球?22.(8分)问题提出(1)如图①,在中,,求的面积.问题探究(2)如图②,半圆的直径,是半圆的中点,点在上,且,点是上的动点,试求的最小值.问题解决(3)如图③,扇形的半径为在选点,在边上选点,在边上选点,求的长度的最小值.23.(8分)如图1是实验室中的一种摆动装置,在地面上,支架是底边为的等腰直角三角形,摆动臂长可绕点旋转,摆动臂可绕点旋转,,.(1)在旋转过程中:①当三点在同一直线上时,求的长;②当三点在同一直角三角形的顶点时,求的长.(2)若摆动臂顺时针旋转,点的位置由外的点转到其内的点处,连结,如图2,此时,,求的长.24.(8分)如图,抛物线y=ax2+bx﹣3经过点A(2,﹣3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.(1)求抛物线的解析式;(2)抛物线的对称轴上有一点P,使PB+PC的值最小,求点P的坐标;(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.25.(10分)如图,已知△ABC的顶点A、B、C的坐标分别是A(﹣1,﹣1)、B(﹣4,﹣3)、C(﹣4,﹣1).(1)画出△ABC关于原点O中心对称的图形△A1B1C1;(2)将△ABC绕点A按顺时针方向旋转90°后得到△AB2C2,画出△AB2C2并求线段AB扫过的面积.26.(10分)如图,在矩形ABCD中,AB=10,动点E、F分别在边AB、AD上,且AF=AE.将△AEF绕点E顺时针旋转10°得到△A'EF',设AE=x,△A'EF'与矩形ABCD重叠部分面积为S,S的最大值为1.(1)求AD的长;(2)求S关于x的函数解析式,并写出自变量x的取值范围.

参考答案一、选择题(每小题3分,共30分)1、B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,∵地口袋中共有2+4=6个球,其中黄球3个,∴随机抽取一个球是黄球的概率是.故选B.考点:概率.2、D【分析】分别将A,B两点代入双曲线解析式,表示出和,然后根据列出不等式,求出m的取值范围.【详解】解:将A(-1,y1),B(2,y2)两点分别代入双曲线,得,,∵y1>y2,,解得,故选:D.【点睛】本题考查了反比例函数图象上点的坐标特征,解不等式.反比例函数图象上的点的坐标满足函数解析式.3、D【分析】根据反比例函数的比例系数的几何意义:反比例函数图象上一点向x轴,y轴作垂线与坐标轴围成的矩形面积等于|k|解答即可.【详解】∵点P在反比例函数(x<0)的图象上,∴S矩形OAPB=|-4|=4,故选:D.【点睛】本题主要考查反比例函数的比例系数的几何意义,掌握反比例函数上一点向x轴,y轴作垂线与坐标轴围成的矩形面积等于|k|是关键.4、B【分析】根据中心对称图形的概念,即可求解.【详解】A、是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项符合题意;C、是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项不合题意.故选:B.【点睛】本题主要考查中心对称图形的概念掌握它的概念“把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形”,是解题的关键.5、D【分析】首先证明△BAD∽△BCA,由相似三角形的性质可得:△BAD的面积:△BCA的面积为1:4,得出△BAD的面积:△ACD的面积=1:3,即可求出△ABD的面积.【详解】解:∵∠BAD=∠C,∠B=∠B,∴△BAD∽△BCA,∵AC=2AD,∴,∴,∵△ACD的面积为15,∴△ABD的面积=×15=5,故选:D.【点睛】本题主要考查了相似三角形的判定与性质,掌握相似三角形的判定与性质是解题的关键.6、C【分析】易证BE∥PG可得∠FPG=∠PFB,再由折叠的性质得∠FPB=∠FPG,所以∠FPB=∠PFB,根据等边对等角即可判断①;由矩形的性质得∠A=∠D=90°,AB=CD,用SAS即可判定全等,从而判断②;证明△ABE∽△DEC,得出比例式建立方程求出DE,从而判断③;证明△ECF∽△GCP,进而求出PC,即可得到sin∠PCB的值,从而判断④;证明△GEF∽△EAB,利用对应边成比例可得出结论,从而判断⑤.【详解】①∵四边形ABCD为矩形,顶点B的对应点是G,∴∠G=90°,即PG⊥CG,∵BE⊥CG∴BE∥PG∴∠FPG=∠PFB由折叠的性质可得∠FPB=∠FPG,∴∠FPB=∠PFB∴BP=BF,故①正确;②∵四边形ABCD为矩形,∴∠A=∠D=90°,AB=DC又∵点E是AD的中点,∴AE=DE在△AEB和△DEC中,∴△AEB≌△DEC(SAS),故②正确;③当AD=25时,∵∠BEC=90°,∴∠AEB+∠CED=90°,∵∠AEB+∠ABE=90°,∴∠CED=∠ABE,∵∠A=∠D=90°,∴△ABE∽△DEC,∴,即,解得AE=9或16,∵AE<DE,∴AE=9,DE=16,故③正确;④在Rt△ABE中,在Rt△CDE中,由①可知BE∥PG,∴△ECF∽△GCP∴设BP=BF=PG=a,则EF=BE-BF=15-a,由折叠性质可得CG=BC=25,∴,解得,在Rt△PBC中,∴sin∠PCB=,故④错误.⑤如图,连接FG,

∵∠GEF=∠PGC=90°,

∴∠GEF+∠PGC=180°,

∴BF∥PG

∵BF=PG,

∴四边形BPGF是菱形,

∴BP∥GF,GF=BP=9

∴∠GFE=∠ABE,

∴△GEF∽△EAB,

∴BE•EF=AB•GF=12×9=108,故⑤正确;①②③⑤正确,故选C.【点睛】本题考查四边形综合问题,难度较大,需要熟练掌握全等三角形的判定,相似三角形的判定和性质,以及勾股定理和三角函数,综合运用所学几何知识是关键.7、A【分析】根据垂径定理的推论和勾股定理即可求出BC和AC,然后根据S阴影=S半圆O-S△ABC计算面积即可.【详解】解:∵直径∴OB=OD=,∠ACB=90°∵点平分劣弧,∴BC=2BE,OE⊥BC,OE=OD-DE=4在Rt△OBE中,BE=∴BC=2BE=6根据勾股定理:AC=∴S阴影=S半圆O-S△ABC==故选A.【点睛】此题考查的是求不规则图形的面积,掌握垂径定理与勾股定理的结合和半圆的面积公式、三角形的面积公式是解决此题的关键.8、C【分析】连接AP,根据同角的余角相等可得∠ABP=∠CBP′,然后利用“边角边”证明△ABP和△CBP′全等,根据全等三角形对应边相等可得AP=CP′,连接PP′,根据旋转的性质可得△PBP′是等腰直角三角形,然后求出∠AP′P是直角,再利用勾股定理用AP′表示出PP′,又等腰直角三角形的斜边等于直角边的倍,代入整理即可得解.【详解】解:如图,连接AP,∵BP绕点B顺时针旋转90°到BP′,∴BP=BP′,∠ABP+∠ABP′=90°,又∵△ABC是等腰直角三角形,∴AB=BC,∠CBP′+∠ABP′=90°,∴∠ABP=∠CBP′,在△ABP和△CBP′中,∵,∴△ABP≌△CBP′(SAS),∴AP=P′C,∵P′A:P′C=1:4,∴AP=4P′A,连接PP′,则△PBP′是等腰直角三角形,∴∠BP′P=45°,PP′=PB,∵∠AP′B=135°,∴∠AP′P=135°﹣45°=90°,∴△APP′是直角三角形,设P′A=x,则AP=4x,∴PP'=,∴P'B=PB=,∴P′A:P′B=2:,故选:C.【点睛】本题主要考查的是全等三角形的性质以及判定,掌握全等三角形的五种判定方法的解本题的关键.9、C【解析】连接AC,根据线段垂直平分线的性质可得AB=AC=2,然后利用周长公式进行计算即可得答案.【详解】如图连接AC,,,,菱形ABCD的周长,故选C.【点睛】本题考查了菱形的性质、线段的垂直平分线的性质等知识,熟练掌握的灵活应用相关知识是解题的关键.10、B【分析】根据题意,求出b2﹣4ac与0的大小关系即可判断.【详解】∵b2﹣4ac=36﹣4×1×9=0∴二次函数y=x2+6x+9的图象与x轴有一个交点.故选:B.【点睛】此题考查的是求二次函数与x轴的交点个数,掌握二次函数与x轴的交点个数和b2﹣4ac的符号关系是解决此题的关键.二、填空题(每小题3分,共24分)11、四【分析】有二次函数的图象可知:,,进而即可得到答案.【详解】∵二次函数的图象与x轴有两个交点,∴,∵抛物线的对称轴在y轴的左侧,∴,即:,∴点在第四象限,故答案是:四【点睛】本题主要考查二次函数图象与性质,掌握二次函数图象与二次函数解析式的系数之间的关系,是解题的关键.12、【解析】试题分析:∵∠ADC=∠BDE,∠C=∠E,∴△ADC∽△BDE,∴,∵AD=4,BC=8,BD:DC=5:3,∴BD=5,DC=3,∴DE=.故选B.考点:相似三角形的判定与性质.13、(0,3)【分析】要求抛物线与y轴的交点,即令x=0,解方程即可.【详解】解:令x=0,则y=3,即抛物线y=2x2-5x+3与y轴的交点坐标是(0,3).故答案为(0,3).【点睛】本题考查了抛物线与y轴的交点.求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与y轴的交点坐标,令x=0,即可求得交点纵坐标.14、1﹣1【分析】连接OC,作EF⊥OC于F,根据圆心角、弧、弦的关系定理得到∠AOC=30°,根据等腰三角形的性质、三角形内角和定理得到∠ECF=15°,根据正切的定义列式计算,得到答案.【详解】连接OC,作EF⊥OC于F,∵点A关于直线CD的对称点为E,点E落在半径OA上,∴CE=CA,∵=,∴∠AOC=∠AOB=30°,∵OA=OC,∴∠OAC=∠OCA=75°,∵CE=CA,∴∠CAE=∠CEA=75°,∴∠ACE=30°,∴∠ECF=∠OCA-∠ACE=75°-30°=15°,设EF=x,则FC=x,在Rt△EOF中,tan∠EOF=,∴OF==,由题意得,OF+FC=OC,即x+x=1,解得,x=2﹣2,∵∠EOF=30°,∴OE=2EF=1﹣1,故答案为:1﹣1.【点睛】本题考查了圆心角、弧、弦的关系、解直角三角形的应用、三角形内角和定理,掌握锐角三角函数的定义是解题的关键.15、【分析】直接利用公式法求解即可,横坐标为:,纵坐标为:.【详解】解:由题目得出:抛物线顶点的横坐标为:;抛物线顶点的纵坐标为:抛物线顶点的坐标为:(-4,-10).故答案为:(-4,-10).【点睛】本题考查二次函数的知识,掌握二次函数的图象和性质是解题的关键.16、①②.【解析】解:①如图所示,∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,∴∠BOE=∠COF.在△BOE与△COF中,∵OB=OC,∠BOE=∠COF,OE=OF,∴△BOE≌△COF,∴BE=CF,∴,①正确;②∵OC=OB,∠COH=∠BOG,∠OCH=∠OBG=15°,∴△BOG≌△COH,∴OG=OH.∵∠GOH=90°,∴△OGH是等腰直角三角形,②正确;③如图所示,∵△HOM≌△GON,∴四边形OGBH的面积始终等于正方形ONBM的面积,③错误;④∵△BOG≌△COH,∴BG=CH,∴BG+BH=BC=1.设BG=x,则BH=1﹣x,则GH====,∴其最小值为,∴△GBH周长的最小值=GB+BH+GH=1+,D错误.故答案为①②.17、25【解析】首先求出∠HDB的度数,再利用直角三角形斜边中线定理可得OH=OD,由此可得∠OHD=∠ODH即可解决问题.【详解】∵四边形ABCD是菱形,∴AC⊥BD,DO=OB,∠DAO=∠BAO=25°,∴∠ABO=90°−∠BAO=65°,∵DH⊥AB,∴∠DHB=90°,∴∠BDH=90°−ABO=25°,在Rt△DHB中,∵OD=OB,∴OH=OD=OB,∴∠DHO=∠HDB=25°,故答案为:25.【点睛】本题考查了菱形的性质,直角三角形斜边中线定理,熟练掌握性质定理是解题的关键.18、80°50°【分析】直接利用圆周角定理得到∠AOB=80°,再计算出∠BOC=50°,从得到弧BC的度数.【详解】解:∵∠AOB=2∠ACB=2×40°=80°,∴∠BOC=∠AOC﹣∠AOB=130°﹣80°=50°,∴弧BC的度数为50°.故答案为80°,50°.【点睛】此题主要考查圆周角定理,解题的关键是熟知圆周角定理的内容.三、解答题(共66分)19、薛老师所带班级有56人.【分析】设薛老师所带班级有x人,根据题意列出方程求解即可.【详解】解:设薛老师所带班级有x人,依题意,得:x(x﹣1)=1540,整理,得:x2﹣x﹣3080=0,解得:x1=56,x2=﹣55(不合题意,舍去).答:薛老师所带班级有56人.【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.20、【解析】x²-4x-7=0,∵a=1,b=-4,c=-7,∴△=(-4)²-4×1×(-7)=44>0,∴x=,∴.21、(1);(2);(3)n=1【分析】(1)摸到白球的可能为2种,根据求概率公式即可得到答案;(2)利用树状图法,即可得到概率;(3)设放入黑球n个,根据摸到黑球的概率,即可求出n的值.【详解】解:(1)根据题意,恰好摸到白球有2种,∴将“恰好是白球”记为事件A,P(A)=;(2)由树状图,如下:∴事件总数有12种,恰好抽到2个白球有2种,∴将“2个都是白球”记为事件B,P(B)=;(3)设放入n个黑球,由题意得:=,解得:n=1.【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.解题的关键是掌握求概率的方法.22、(1)12;(2);(3).【分析】(1)如图1中,过点作,交延长线于点,通过构造直角三角形,求出BD利用三角形面积公式求解即可.(2)如图示,作点关于的对称点,交于点,连接,交于点,连接、、,过点作,交延长线于点,确定点P的位置,利用勾股定理与矩形的性质求出CQ的长度即为答案.(3)解图3所示,在上这一点作点关于的对称点,作点关于的对称点,连接,交于点,交于点,连接,通过轴对称性质的转化,最终确定最小值转化为SN的长.【详解】(1)如解图1所示,过点作,交延长线于点,,,,交延长线于点,为等腰直角三角形,且,,在中,,,即,,,解得:,,.(2)如解图2所示,作点关于的对称点,交于点,连接,交于点,连接、、,过点作,交延长线于点,关于的对称点,交于点,,,点为上的动点,,当点处于解图2中的位置,取最小值,且最小值为的长度,点为半圆的中点,,,,,,在中,由作图知,,且,,,由作图知,四边形为矩形,,,,的最小值为.(3)如解图3所示,在上这一点作点关于的对称点,作点关于的对称点,连接,交于点,交于点,连接,点关于的对称点,点关于的对称点,连接,交于点,交于点,,,,,.,,为上的点,为上的点,当点处于解图3的位置时,的长度取最小值,最小值为的长度,,,.扇形的半径为,,在中,,的长度的最小值为.【点睛】本题主要考察了轴对称、勾股定理、圆、四边形等相关内容,理解题意,作出辅助线是做题的关键.23、(1)①,或;②或;(2).【分析】(1)①分两种情形分别求解即可.②显然∠MAD不能为直角.当∠AMD为直角时,根据AM2=AD2-DM2,计算即可,当∠ADM=90°时,根据AM2=AD2+DM2,计算即可.(2)连接CD.首先利用勾股定理求出CD1,再利用全等三角形的性质证明BD2=CD1即可.【详解】(1)①,或.②显然不能为直角,当为直角时,,∴.当为直角时,,∴.(2)连结,由题意得,,∴,,又∵,∴,∴.∵,∴,即.又∵,,∴,∴.【点睛】本题属于四边形综合题,考查了等腰直角三角形的性质,勾股定理,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.24、(1)(2)点P的坐标;(3)M【分析】(1)待定系数法即可得到结论;(2)根据线段垂直平分线上的点到线段两端点的距离相等,可得M在对称轴上,根据两点之间线段最短,可得M点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论