版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.下面是一名学生所做的4道练习题:①;②;③,④,他做对的个数是()A.1 B.2 C.3 D.42.若三角形的三边长分别为x、2x、9,则x的取值范围是()A.3<x<9 B.3<x<15 C.9<x<15 D.x>153.在下列各原命题中,其逆命题为假命题的是()A.直角三角形的两个锐角互余B.直角三角形两条直角边的平方和等于斜边的平方C.等腰三角形两个底角相等D.同角的余角相等4.小东一家自驾车去某地旅行,手机导航系统推荐了两条线路,线路一全程120千米,线路二全程150千米,汽车在线路二上行驶的平均时速是线路一上车速的2倍,线路二的用时预计比线路一用时少小时,如果设汽车在线路一上行驶的平均速度为千米/时,则下面所列方程正确的是()A. B.C. D.5.如图,,,,,,点在线段上,,是等边三角形,连交于点,则的长为()A. B. C. D.6.若,则m,n的值分别为()A. B.C. D.7.已知a∥b,某学生将一直角三角板放置如图所示,如果∠1=35°,那么∠2的度数为()A.35° B.55° C.56° D.65°8.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()A.5.6×10﹣1 B.5.6×10﹣2 C.5.6×10﹣3 D.0.56×10﹣19.已知a、b、c是△ABC三边的长,则+|a+b-c|的值为()A.2a B.2b C.2c D.一10.下面计算正确的是()A. B.C. D.11.下列图形中,既是轴对称图形又是中心对称图形的是()A. B.C. D.12.下列说法正确的是()A.若=x,则x=0或1 B.算术平方根是它本身的数只有0C.2<<3 D.数轴上不存在表示的点二、填空题(每题4分,共24分)13.如图,△ABC中,AB=AC,∠BAC=48°,∠BAC的平分线与线段AB的垂直平分线OD交于点O.连接OB、OC,将∠ACB沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为_____度.14.若实数x,y满足y=+3,则x+y=_____.15.画出一个正五边形的所有对角线,共有_____条.16.观察下列等式:;;......从上述等式中找出规律,并利用这一规律计算:=___________.17.如果ab>1,ac<1.则直线y=x+不经过第___象限.18.若关于x,y的二元一次方程组的解也是二元一次方程x+y=36的解,则k的值为_____.三、解答题(共78分)19.(8分)如图,是的外角的平分线,且交的延长线于点.(1)若,,求的度数;(2)请你写出、、三个角之间存在的等量关系,并写出证明过程.20.(8分)如图,在中,,,是中点,.求证:(1);(2)是等腰直角三角形.21.(8分)在每个小正方形的边长为1的网格中,建立如图所示的平面直角坐标系.(1)在网格中画出△,使它与△关于轴对称;(2)点的对称点的坐标为;(3)求△的面积.22.(10分)如图1,在平面直角坐标系中,直线:与轴交于点A,且经过点B(2,m),点C(3,0).(1)求直线BC的函数解析式;(2)在线段BC上找一点D,使得△ABO与△ABD的面积相等,求出点D的坐标;(3)y轴上有一动点P,直线BC上有一动点M,若△APM是以线段AM为斜边的等腰直角三角形,求出点M的坐标;(4)如图2,E为线段AC上一点,连结BE,一动点F从点B出发,沿线段BE以每秒1个单位运动到点E,再沿线段EA以每秒个单位运动到A后停止,设点F在整个运动过程中所用时间为t,求t的最小值.23.(10分)如图,在中,,分别是边,上的点,且.求证:四边形为平行四边形.24.(10分)快车从M地出发沿一条公路匀速前往N地,慢车从N地出发沿同一条公路匀速前往M地,已知快车比慢车晚出发0.5小时,快车先到达目的地.设慢车行驶的时间为t(h),快慢车辆车之间的距离为s(km),s与t的函数关系如图1所示.(1)求图1中线段BC的函数表达式;(2)点D的坐标为,并解释它的实际意义;(3)设快车与N地的距离为y(km),请在图2中画出y关于慢车行驶时间t的函数图象.(标明相关数据)25.(12分)如图,在中,.(1)作的角平分线交于点;(要求:尺规作图,保留作图痕迹,不写作法)(2)若,过点作于,求的长.26.如图,在中,,点是边上的中点,、分别垂直、于点和.求证:
参考答案一、选择题(每题4分,共48分)1、B【分析】根据零次幂、积的乘方、完全平方公式、负整数指数幂进行判断.【详解】解:①,正确;②,错误;③,错误;④,正确.故选B.【点睛】本题考查了整式乘法和幂的运算,正确掌握运算法则是解题关键.2、A【分析】根据三角形的三边关系列出不等式组即可求出x的取值范围.【详解】∵一个三角形的三边长分别为x,2x和1,∴,∴3<x<1.故选:A.【点睛】考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.3、D【分析】首先写出各个命题的逆命题,然后进行判断即可.【详解】A、逆命题是:两个锐角互余的三角形是直角三角形,是真命题,故此选项不符合题意;B、逆命题是:如果一个三角形有两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形,是真命题,故此选项不符合题意;C、逆命题是:有两个角相等的三角形是等腰三角形,是真命题,故此选项不符合题意;D、逆命题是:如果两个角相等,那么它们是同一个角的余角,是假命题,故此选项符合题意.故选:D.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.4、A【分析】根据题意可得在线路二上行驶的平均速度为2xkm/h,根据线路二的用时预计比线路一用时少小时,列方程即可.【详解】解:设汽车在线路一上行驶的平均速度为xkm/h,则在线路二上行驶的平均速度为2xkm/h,由题意得:故选:A.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是,读懂题意,设出未知数,找出合适的等量关系,列出方程.5、B【分析】根据等边三角形,等腰直角三角形的性质和外角的性质以及“手拉手”模型,证明,可得,由已知条件得出,结合的直角三角形的性质可得的值.【详解】,,,,又,为等边三角形,,是等边三角形,所以在和中,,,,,故选:B.【点睛】考查了等腰直角三角形,等边三角形和外角性质,以及“手拉手”模型证明三角形全等,全等三角形的性质,和的直角三角形的性质的应用,注意几何综合题目的相关知识点要熟记.6、C【分析】先根据多项式乘以多项式的法则计算,再根据多项式相等的条件即可求出m、n的值.【详解】∵,
∵,
∴,
∴,.
故选:C.【点睛】本题主要考查了多项式乘以多项式的法则:.注意不要漏项,漏字母,有同类项的合并同类项.7、B【分析】利用两直线平行同位角相等得到一对角相等,再由对顶角相等及直角三角形两锐角互余求出所求角度数即可.【详解】解:∵a∥b∴∠3=∠4∵∠3=∠1∴∠1=∠4∵∠5+∠4=90°且∠5=∠2∴∠1+∠2=90°∵∠1=35°∴∠2=55°故选B.【点睛】此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.8、B【详解】0.056用科学记数法表示为:0.056=,故选B.9、B【解析】试题解析:∵三角形两边之和大于第三边,两边之差小于第三边,
∴a-b-c<0,a+b-c>0
∴+|a+b-c|=b+c-a+a+b-c=2b.
故选B.10、C【解析】A.合并同类项得到结果;B.利用同底数幂的乘法法则计算得到结果;C.利用幂的乘方与积的乘方运算法则计算得到结果;D.利用平方差公式计算得到结果,即可作出判断.【详解】A.原式=,错误;B.原式=,错误;C.原式=,正确;D.原式=,错误.故选C.【点睛】本题主要考查同底数幂的乘法,合并同类项,幂的乘方与积的乘方,平方差公式运算,熟知其运算法则是解题的关键.11、D【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、是轴对称图形,不是中心对称图形,故本选项不符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、既是轴对称图形又是中心对称图形,故本选项符合题意.故选:D.【点睛】本题主要考查了轴对称图形与中心对称图形,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.12、C【分析】根据算术平方根,立方根,实数和数轴的关系逐个判断即可.【详解】A、若=x,则x=0或±1,故本选项错误;B、算术平方根是它本身的数有0和1,故本选项错误;C、2<<3,故本选项正确;D、数轴上的点可以表示无理数,有理数,故本选项错误;故选:C.【点睛】本题考查了算术平方根,立方根,实数和数轴的关系的应用,主要考查学生的辨析能力和理解能力.二、填空题(每题4分,共24分)13、1【分析】根据角平分线的定义求出∠BAO,根据等腰三角形的性质、三角形内角和定理求出∠ABC,根据线段垂直平分线的性质得到OA=OB,得到∠ABO=∠BAO,证明△AOB≌△AOC,根据全等三角形的性质、折叠的性质、三角形内角和定理计算,得到答案.【详解】解:∵∠BAC=48°,AO为∠BAC的平分线,∴∠BAO=∠BAC=×48°=24°,∵AB=AC,∴∠ABC=(180°﹣∠BAC)=(180°﹣48°)=66°,∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=24°,∴∠OBC=∠ABC﹣∠ABO=66°﹣24°=42°,在△AOB和△AOC中,∴△AOB≌△AOC(SAS),∴OB=OC,∴∠OCB=∠OBC=42°,由折叠的性质可知,OE=CE,∴∠COE=∠OCB=42°,在△OCE中,∠OEC=180°﹣∠COE﹣∠OCB=180°﹣42°﹣42°=1°,故答案为:1.【点睛】本题主要考查全等三角形的判定性质、垂直平分线的性质,等腰三角形的性质,三角形内角和定理,掌握全等三角形的性质、折叠的性质、垂直平分线的性质,角平分线的定义,三角形内角和定理是解题的关键.14、1.【分析】根据被开方数大于等于0列式求出x的值,再求出y的值,然后相加即可得解.【详解】解:根据题意得,5﹣x≥0且x﹣5≥0,解得x≤5且x≥5,∴x=5,y=3,∴x+y=5+3=1.故答案为:1.【点睛】本题考查了二次根式有意义的条件,掌握二次根式的被开方数大于等零时有意义是解题的关键.15、1【分析】画出图形即可求解.【详解】解:如图所示:五边形的对角线共有=1(条).故答案为:1.【点睛】本题考查多边形的对角线,解题关键是n边形从一个顶点出发的对角线有(n-3)条.16、1【分析】先根据已知等式归纳类推出一般规律,再根据二次根式的加减法与乘法运算法则即可得.【详解】第1个等式为:,第2个等式为:,第3个等式为:,归纳类推得:第n个等式为:(其中,n为正整数),则,,,,,故答案为:1.【点睛】本题考查了二次根式的加减法与乘法运算,依据已知等式,正确归纳出一般规律是解题关键.17、一【分析】先根据ab>1,ac<1讨论出a、b、c的符号,进而可得出,的符号,再根据一次函数的图象与系数的关系进行解答即可.【详解】解:∵ab>1,ac<1,∵a、b同号,a、c异号,①当a>1,b>1时,c<1,∴>1,<1,∴直线y=-x+过二、三、四象限;②当a<1,b<1时,c>1,∴>1,<1,∴直线y=-x+过二、三、四象限.综上可知,这条直线不经过第一象限,故答案为:一.【点睛】本题考查的是一次函数的图象与系数的关系,以及分类讨论的数学思想,解答此题的关键是根据ab>1,ac<1讨论出a、b、c的符号,进而可得出,的符号.18、1【分析】先用含k的式子表示x、y,根据方程组的解也是二元一次方程x+y=36的解,即可求得k的值.【详解】解:解方程组得,,因为方程组的解也是二元一次方程x+y=36的解,所以3k=36,解得k=1.故答案为1.【点睛】本题考查二元一次方程与方程组的解的意义,深刻理解定义是解答关键.三、解答题(共78分)19、(1);(2),证明见解析.【分析】(1)根据三角形的外角定理,即可得到,再根据角平分线的性质可求得,最后利用三角形的外角定理即可求得.(2)根据三角形的外角定理,可求得,,由平分可知,进而得到,即可得三角之间的等量关系为.【详解】(1)∵是的外角,∴∵,∴∵是的平分线∴∵是的外角,∴∵,∴(2),证明如下:∵是的外角.∴∵是的外角.∴∵是的平分线,∴∴∴即:.【点睛】本题主要考查了三角形的外角定理和角平分线的性质,熟练掌握性质才能灵活应用性质解题.20、(1)见解析;(2)见解析【分析】(1)连接AD,证明△BFD≌△AED即可得出DE=DF;(2)根据三线合一性质可知AD⊥BC,由△BFD≌△AED可知∠BDF=∠ADE,根据等量代换可知∠EDF=90°,可证△DEF为等腰直角三角形.【详解】证明:(1)如图,连接AD,∵Rt△ABC中,∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵AB=AC,是中点,∴∠DAE=∠BAD=45°∴∠BAD=∠B=45°∴AD=BD,∠ADB=90°,在△DAE和△DBF中,,∴△DAE≌△DBF(SAS),∴DE=DF;(2)∵△DAE≌△DBF∴∠ADE=∠BDF,DE=DF,∵∠BDF+∠ADF=∠ADB=90°,∴∠ADE+∠ADF=90°.∴△DEF为等腰直角三角形.【点睛】本题主要考查了全等三角形的判定与性质和等腰三角形的判定,考查了学生综合运用数学知识的能力,连接AD,构造全等三角形是解决问题的关键.21、(1)见解析;(2)(-3,5);(3)1.【分析】(1)分别作出点A、B、C关于y轴的对称点,再顺次连接可得;
(2)根据所作图形可得A1点的坐标;
(3)根据割补法求解可得△的面积等于矩形的面积减去三个三角形的面积.【详解】解:(1)如图所示,△A1B1C1即为所求;
(2)由图知A1的坐标为(-3,5);故答案是:(-3,5);
(3)△的面积为4×4-×2×3-×1×4-×2×4=1.【点睛】此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键.22、(1);(2);(3)或;(4)t最小值为秒【分析】(1)把B(2,m)代入直线l解析式可求出m的值,即可得B点坐标,设直线BC的解析式为y=kx+b,把B、C两点坐标代入可求得k、m的值,即可的直线BC的解析式;(2)过点O作交BC于点D,可知S△ABC=S△ABD,,联立直线BC与OD的解析式解得交点D的坐标即可;(3)分别讨论P点在y轴的负半轴和正半轴时两种情况,①P点在y轴的负半轴时,作于点N,可证明△AOP△PNM1,设OP=NM1=m,ON=m-2,则M1的坐标为(m,2-m),代入BC解析式即可求出m的值,进而可得M1坐标;②当P点在y轴正半轴时,同①解法可求出M2的坐标,综上即可得答案;(4)作射线AQ与x轴正半轴的夹角为45°,过点B作x轴的垂线交射线AQ于点Q,作于点K,作于点T,可求出AG、AQ、BQ的长,根据时间t=+=BE+EK≥BT,利用面积法求出BT的值即可.【详解】(1)解:将点B(2,m)代入得m=3∴设直线BC解析式为得到∴∴直线BC解析式为(2)如图,过点O作交BC于点D∴S△ABC=S△ABD,∴直线OD的解析式为y=x,∴解得(3)①如图,当P点在y轴负半轴时,作于点N,∵直线AB与x轴相交于点A,∴点A坐标为(-2,0),∵∠APO+∠PAO=90°,∠APO+∠PNM1=90°∴∠PAO=∠PNM1,又∵AP=PM1,∠POA=∠PNM1=90°∴△AOP△PNM1,∴PN=OA=2,设OP=NM1=m,ON=m-2∴解得∴②如图,作于点H可证明△AOP△PHM2设HM2=n,OH=n-2∴解得∴M2(,)∴综上所述或M2(,).(4)如图,作射线AQ与x轴正半轴的夹角为45°,过点B作x轴的垂线交射线AQ于点Q,作于点K,作于点T,∵∠CAQ=45°BG⊥x轴,B(2,3)∴AG=4,∴AQ=4,BQ=7,t==BE+EK≥BT,由面积法可得:∴×4×BT=×7×4,∴BT=因此t最小值为.【点睛】本题考查一次函数的几何应用,待定系数法求一次函数解析式及面积公式的应用,熟练掌握相关知识是解题关键.23、证明见解析.【分析】由平行四边形的性质,得到AD∥BC,AD=BC,由,得到,即可得到结论.【详解】证明:四边形是平行四边形,∴,.∵,∴.∴,∵,,∴四边形是平行四边形.【点睛】本题考查了平行四边形的判定和性质,解题的关键是熟练掌握平行四边形的判定和性质进行证明.24、(1)y=﹣120x+180;(2)(,90),慢车行驶了小时后,两车相距90千米;(3)详见解析.【分析】(1)由待定系数法可求解;(2)先求出两车的速度和,即可求解;(3)根据函数图象求出快车的速度,从而得y关于慢车行驶时间t的函数解析式,进而即可画出图象.【详解】(1)设线段BC所在直线的函数表达式为:y=kx+b(k,b为常数,k≠0)∴,解得:,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 美国本科面试技巧
- 安全事迹宣传集锦讲解
- 画室消防安全须知
- 消防安全培训实战指南
- 工厂安全算法优化讲解
- 深圳律师面试技巧
- 德语专业就业前景分析
- 安全数据来源分析讲解
- 隔离点消防安全制度
- 同声传译职业发展路径
- 2022年9月国家开放大学专科《高等数学基础》期末纸质考试试题及答案
- 2023-2024学年广东省广州市荔湾区九年级(上)期末数学试卷(含答案)
- JJF(陕) 042-2020 冲击试样缺口投影仪校准规范
- T-CFA 030501-2020 铸造企业生产能力核算方法
- JBT 8127-2011 内燃机 燃油加热器
- MOOC 西方园林历史与艺术-北京林业大学 中国大学慕课答案
- 混凝土缓凝剂-标准
- 年生产一亿粒阿莫西林胶囊(0.25)
- 危重患者的早期识别
- 环泊酚注射液-临床用药解读
- 老年人护理需求评估表
评论
0/150
提交评论