版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,△ABC中,D是AB的中点,DE∥BC,连接BE.若AE=6,DE=5,∠BEC=90°,则△BCE的周长是()A.12 B.24 C.36 D.482.对于二次函数y=-(x+1)2+3,下列结论:①其图象开口向下;②其图象的对称轴为直线x=1;③其图象的顶点坐标为(-1,3);④当x>1时,y随x的增大而减小.其中正确结论的个数为()A.1 B.2 C.3 D.43.如图,线段AB两个端点的坐标分别为A(6,6),B(8,2).以原点O为位似中心,在第一象限内将线段AB缩小后得到线段CD,且D(4,1),则端点C的坐标为()A.(3,1) B.(4,1) C.(3,3) D.(3,4)4.如图所示,图中既是轴对称图形,又是中心对称图形的是()A. B. C. D.5.如图,在⊙O中,AB⊥OC,垂足为点D,AB=8,CD=2,若点P是优弧上的任意一点,则sin∠APB=()A. B. C. D.6.若点在抛物线上,则的值()A.2021 B.2020 C.2019 D.20187.反比例函数的图象如图所示,以下结论:①常数m<-1;②在每个象限内,y随x的增大而增大;③若A(-1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(-x,-y)也在图象上.其中正确的是A.①② B.②③ C.③④ D.①④8.如图1,在菱形ABCD中,∠A=120°,点E是BC边的中点,点P是对角线BD上一动点,设PD的长度为x,PE与PC的长度和为y,图2是y关于x的函数图象,其中H是图象上的最低点,则a+b的值为()A.7 B. C. D.9.下列条件中,一定能判断两个等腰三角形相似的是()A.都含有一个40°的内角 B.都含有一个50°的内角C.都含有一个60°的内角 D.都含有一个70°的内角10.一个半径为2cm的圆的内接正六边形的面积是()A.24cm2 B.6cm2 C.12cm2 D.8cm211.已知点,,,在二次函数的图象上,则,,的大小关系是()A. B. C. D.12.如图,线段,点是线段的黄金分割点(),点是线段的黄金分割点(),点是线段的黄金分割点(),..,依此类推,则线段的长度是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,一块飞镖游戏板由大小相等的小正方形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中黑色区域的概率是_____.14.方程x2+2x+m=0有两个相等实数根,则m=___________.15.如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为_____.16.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段的长为________.17.如图,在矩形中对角线与相交于点,,垂足为点,且,则的长为___________.18.已知二次函数,用配方法化为的形式为_________________,这个二次函数图像的顶点坐标为____________.三、解答题(共78分)19.(8分)(1)如图,已知AB、CD是大圆⊙O的弦,AB=CD,M是AB的中点.连接OM,以O为圆心,OM为半径作小圆⊙O.判断CD与小圆⊙O的位置关系,并说明理由;(2)已知⊙O,线段MN,P是⊙O外一点.求作射线PQ,使PQ被⊙O截得的弦长等于MN.(不写作法,但保留作图痕迹)20.(8分)如图,已知二次函数的图象与轴交于点、,与轴交于点,直线交二次函数图象的对称轴于点,若点C为的中点.(1)求的值;(2)若二次函数图象上有一点,使得,求点的坐标;(3)对于(2)中的点,在二次函数图象上是否存在点,使得∽?若存在,求出点的坐标;若不存在,请说明理由.21.(8分)定义:如果一个四边形的一组对角互余,那么我们称这个四边形为“对角互余四边形”.(1)如图①,在对角互余四边形ABCD中,∠B=60°,且AC⊥BC,AC⊥AD,若BC=1,则四边形ABCD的面积为;(2)如图②,在对角互余四边形ABCD中,AB=BC,BD=13,∠ABC+∠ADC=90°,AD=8,CD=6,求四边形ABCD的面积;(3)如图③,在△ABC中,BC=2AB,∠ABC=60°,以AC为边在△ABC异侧作△ACD,且∠ADC=30°,若BD=10,CD=6,求△ACD的面积.22.(10分)有一张长,宽的长方形硬纸片(如图1),截去四个全等的小正方形之后,折成无盖的纸盒(如图2).若纸盒的底面积为,求纸盒的高.23.(10分)已知,如图,抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB,(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值.24.(10分)在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系。的顶点都在格点上,请解答下列问题:(1)作出关于原点对称的;(2)写出点、、的坐标。25.(12分)如图,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF.(1)求证:∠HEA=∠CGF;(2)当AH=DG时,求证:菱形EFGH为正方形.26.如图,胡同左右两侧是竖直的墙,一架米长的梯子斜靠在右侧墙壁上,测得梯子与地面的夹角为,此时梯子顶端恰巧与墙壁顶端重合.因梯子阻碍交通,故将梯子底端向右移动一段距离到达处,此时测得梯子与地面的夹角为,问:胡同左侧的通道拓宽了多少米(保留根号)?
参考答案一、选择题(每题4分,共48分)1、B【解析】试题解析:△ABC中,D是AB的中点,DE∥BC,是的中点,∠BEC=90°,△BCE的周长故选B.点睛:三角形的中位线平行于第三边而且等于第三边的一半.2、C【解析】由抛物线解析式可确定其开口方向、对称轴、顶点坐标,可判断①②③,再利用增减性可判断④,可求得答案.【详解】∵∴抛物线开口向上,对称轴为直线x=−1,顶点坐标为(−1,3),故②不正确,①③正确,∵抛物线开口向上,且对称轴为x=−1,∴当x>−1时,y随x的增大而增大,∴当x>1时,y随x的增大而增大,故④正确,∴正确的结论有3个,故选:C.【点睛】考查二次函数的图象与性质,掌握二次函数的开口方向、对称轴、顶点坐标的求解方法是解题的关键.3、C【分析】利用位似图形的性质,结合两图形的位似比,即可得出C点坐标.【详解】解:∵线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小后得到线段CD,且D(4,1),∴在第一象限内将线段AB缩小为原来的后得到线段CD,∴点C的横坐标和纵坐标都变为A点的一半,∴点C的坐标为:(3,3).故选:C.【点睛】此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.4、C【解析】根据轴对称图形和中心对称图形的定义(轴对称图形是沿某条直线对折,对折的两部分能够完全重合的图形,中心对称图形是绕着某一点旋转后能与自身重合的图形)判断即可.【详解】解:A选项是中心对称图形但不是轴对称图形,A不符合题意;B选项是轴对称图形但不是中心对称图形,B不符合题意;C选项既是轴对称图形又是中心对称图形,C符合题意;D选项既不是轴对称图形又不是中心对称图形.故选:C.【点睛】本题考查了轴对称图形与中心对称图形,熟练掌握轴对称图形与中心对称图形的判断方法是解题的关键.5、B【分析】如图,连接OA,OB.设OA=OB=x.利用勾股定理构建方程求出x,再证明∠APB=∠AOD即可解决问题.【详解】如图,连接OA,OB.设OA=OB=x.∵OC⊥AB,∴AD=DB=4,在Rt△AOD中,则有x2=42+(x﹣2)2,∴x=5,∵OA=OB,OD⊥AB,∴∠AOD=∠BOD,∵∠APB=∠AOB=∠AOD,∴sin∠APB=sin∠AOD==,故选:B.【点睛】考查了圆周角定理和解直角三角形等知识,解题的关键是熟练灵活运用其相关知识.6、B【分析】将P点代入抛物线解析式得到等式,对等式进行适当变形即可.【详解】解:将代入中得所以.故选:B.【点睛】本题考查二次函数上点的坐标特征,等式的性质.能根据等式的性质进行适当变形是解决此题的关键.7、C【解析】分析:因为函数图象在一、三象限,故有m>0,故①错误;在每个象限内,y随x的增大而减小,故②错;对于③,将A、B坐标代入,得:h=-m,,因为m>0,所以,h<k,故③正确;函数图象关于原点对称,故④正确.因此,正确的是③④.故选C.8、C【分析】由A、C关于BD对称,推出PA=PC,推出PC+PE=PA+PE,推出当A、P、E共线时,PE+PC的值最小,观察图象可知,当点P与B重合时,PE+PC=6,推出BE=CE=2,AB=BC=4,分别求出PE+PC的最小值,PD的长即可解决问题.【详解】解:∵在菱形ABCD中,∠A=120°,点E是BC边的中点,∴易证AE⊥BC,∵A、C关于BD对称,∴PA=PC,∴PC+PE=PA+PE,∴当A、P、E共线时,PE+PC的值最小,即AE的长.观察图象可知,当点P与B重合时,PE+PC=6,∴BE=CE=2,AB=BC=4,∴在Rt△AEB中,BE=,∴PC+PE的最小值为,∴点H的纵坐标a=,∵BC∥AD,∴=2,∵BD=,∴PD=,∴点H的横坐标b=,∴a+b=;故选C.【点睛】本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.9、C【解析】试题解析:因为A,B,D给出的角可能是顶角也可能是底角,所以不对应,则不能判定两个等腰三角形相似;故A,B,D错误;C.有一个的内角的等腰三角形是等边三角形,所有的等边三角形相似,故C正确.故选C.10、B【解析】设O是正六边形的中心,AB是正六边形的一边,OC是边心距,则△OAB是正三角形,△OAB的面积的六倍就是正六边形的面积解:如图所示:设O是正六边形的中心,AB是正六边形的一边,OC是边心距,则∠AOB=60°,OA=OB=2cm,∴△OAB是正三角形,∴AB=OA=2cm,OC=OA⋅sin∠A=2×=(cm),∴S△OAB=AB⋅OC=×2×=(cm2),∴正六边形的面积=6×=6(cm2).故选B.11、D【分析】由抛物线开口向上且对称轴为直线x=3知离对称轴水平距离越远,函数值越大,据此求解可得.【详解】∵二次函数中a=1>0,∴抛物线开口向上,有最小值.∵x=−=3,∴离对称轴水平距离越远,函数值越大,∵由二次函数图象的对称性可知4−3<3−<3−1,∴.故选:D.【点睛】本题主要考查二次函数图象上点的坐标特征,解题的关键是掌握二次函数的图象与性质.12、A【解析】根据黄金分割的定义得到,则,同理得到,,根据此规律得到.据此可得答案.【详解】解:线段,点是线段的黄金分割点,,,点是线段的黄金分割点,,,.所以线段的长度是,故选:.【点睛】本题考查了黄金分割:把线段分成两条线段和,且使是和的比例中项(即,叫做把线段黄金分割,点叫做线段的黄金分割点;其中,并且线段的黄金分割点有两个.二、填空题(每题4分,共24分)13、【分析】根据几何概率的求解公式即可求解.【详解】解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积∴飞镖落在阴影部分的概率是,故答案为.【点睛】此题主要考查概率的求解,解题的关键是熟知几何概率的公式.14、1【分析】当△=0时,方程有两个相等实数根.【详解】由题意得:△=b2-4ac=22-4m=0,则m=1.故答案为1.【点睛】本题考察了根的判别式与方程根的关系.15、2-2【解析】作DC关于AB的对称点D′C′,以BC中的O为圆心作半圆O,连D′O分别交AB及半圆O于P、G.将PD+PG转化为D′G找到最小值.【详解】如图:取点D关于直线AB的对称点D′,以BC中点O为圆心,OB为半径画半圆,连接OD′交AB于点P,交半圆O于点G,连BG,连CG并延长交AB于点E,由以上作图可知,BG⊥EC于G,PD+PG=PD′+PG=D′G,由两点之间线段最短可知,此时PD+PG最小,∵D′C’=4,OC′=6,∴D′O=,∴D′G=-2,∴PD+PG的最小值为-2,故答案为-2.【点睛】本题考查了轴对称的性质、直径所对的圆周角是直角、线段和的最小值问题等,综合性较强,能灵活利用相关知识正确添加辅助线是解题的关键.通常解此类问题都是将线段之和转化为固定两点之间的线段和最短.16、【解析】已知BC=8,AD是中线,可得CD=4,在△CBA和△CAD中,由∠B=∠DAC,∠C=∠C,可判定△CBA∽△CAD,根据相似三角形的性质可得,即可得AC2=CD•BC=4×8=32,解得AC=4.17、【分析】由矩形的性质可得OC=OD,于是设DE=x,则OE=2x,OD=OC=3x,然后在Rt△OCE中,根据勾股定理即可得到关于x的方程,解方程即可求出x的值,进而可得CD的长,易证△ADC∽△CED,然后利用相似三角形的性质即可求出结果.【详解】解:∵四边形ABCD是矩形,∴∠ADC=90°,BD=AC,OD=BD,OC=AC,∴OC=OD,∵EO=2DE,∴设DE=x,则OE=2x,∴OD=OC=3x,∵CE⊥BD,∴∠DEC=∠OEC=90°,在Rt△OCE中,∵OE2+CE2=OC2,∴(2x)2+52=(3x)2,解得:x=,即DE=,∴,∵∠ADE+∠CDE=90°,∠ECD+∠CDE=90°,∴∠ADE=∠ECD,又∵∠ADC=∠CED=90°,∴△ADC∽△CED,∴,即,解得:.故答案为:.【点睛】本题考查了矩形的性质、勾股定理和相似三角形的判定与性质,属于常考题型,熟练掌握上述基本知识是解题的关键.18、【分析】先利用配方法提出二次项的系数,再加上一次项系数的一半的平方来凑完全平方式,再根据顶点式即可得到顶点的坐标.【详解】利用完全平方公式得:由此可得顶点坐标为.【点睛】本题考查了用配方法将二次函数的一般式转化为顶点式、以及二次函数顶点坐标,熟练运用配方法是解题关键.三、解答题(共78分)19、(1)相切,证明见解析;(2)答案见解析【分析】(1)过点O作ON⊥CD,连接OA,OC,根据垂径定理及其推论可得∠AMO=∠ONC=90°,AM=CN,从而求证△AOM≌△CON,从而判定CD与小圆O的位置关系;(2)在圆O上任取一点A,以A为圆心,MN为半径画弧,交圆O于点B,过点O做AB的垂线,交AB于点C,然后以点O为圆心,OC为半径画圆,连接PO,取PO的中点D,以点D为圆心,OD为半径画圆,交以OC为半径的圆于点E,连接PE,交以OA为半径的圆于F,H两点,FH即为所求.【详解】解:(1)过点O作ON⊥CD,连接OA,OC∵AB、CD是大圆⊙O的弦,AB=CD,M是AB的中点,ON⊥CD∴∠AMO=∠ONC=90°,AM=,CN,∴AM=CN又∵OA=OC∴△AOM≌△CON∴ON=OM∴CD与小圆O相切(2)如图FH即为所求【点睛】本题考查垂径定理及其推论,全等三角形的判定和性质,以及利用垂径定理作图,掌握相关知识灵活应用是本题的解题关键.20、(1);(2)或;(3)不存在,理由见解析.【分析】(1)设对称轴与轴交于点,如图1,易求出抛物线的对称轴,可得OE的长,然后根据平行线分线段成比例定理可得OA的长,进而可得点A的坐标,再把点A的坐标代入抛物线解析式即可求出m的值;(2)设点Q的横坐标为n,当点在轴上方时,过点Q作QH⊥x轴于点H,利用可得关于n的方程,解方程即可求出n的值,进而可得点Q坐标;当点在轴下方时,注意到,所以点与点关于直线对称,由此可得点Q坐标;(3)当点为x轴上方的点时,若存在点P,可先求出直线BQ的解析式,由BP⊥BQ可求得直线BP的解析式,然后联立直线BP和抛物线的解析式即可求出点P的坐标,再计算此时两个三角形的两组对应边是否成比例即可判断点P是否满足条件;当点Q取另外一种情况的坐标时,再按照同样的方法计算判断即可.【详解】解:(1)设抛物线的对称轴与轴交于点,如图1,∴轴,∴,∵抛物线的对称轴是直线,∴OE=1,∴,∴∴将点代入函数表达式得:,∴;(2)设,①点在轴上方时,,如图2,过点Q作QH⊥x轴于点H,∵,∴,解得:或(舍),∴;②点在轴下方时,∵OA=1,OC=3,∴,∵,∴点与点关于直线对称,∴;(3)①当点为时,若存在点P,使∽,则∠PBQ=∠COA=90°,由B(3,0)、Q可得,直线BQ的解析式为:,所以直线PB的解析式为:,联立方程组:,解得:,,∴,∵,,∴,∴不存在;②当点为时,如图4,由B(3,0)、Q可得,直线BQ的解析式为:,所以直线PB的解析式为:,联立方程组:,解得:,,∴,∵,,∴,∴不存在.综上所述,不存在满足条件的点,使∽.【点睛】本题考查了平行线分线段成比例定理、二次函数图象上点的坐标特征、一元二次方程的解法、相似三角形的判定和性质、锐角三角函数和两个函数的交点等知识,综合性强、具有相当的难度,熟练掌握上述知识、灵活应用分类和数形结合的数学思想是解题的关键.21、(1)2;(2)36;(3).【分析】(1)由AC⊥BC,AC⊥AD,得出∠ACB=∠CAD=90°,利用含30°直角三角形三边的特殊关系以及勾股定理,就可以解决问题;(2)将△BAD绕点B顺时针旋转到△BCE,则△BCE≌△BAD,连接DE,作BH⊥DE于H,作CG⊥DE于G,作CF⊥BH于F.这样可以求∠DCE=90°,则可以得到DE的长,进而把四边形ABCD的面积转化为△BCD和△BCE的面积之和,△BDE和△CDE的面积容易算出来,则四边形ABCD面积可求;(3)取BC的中点E,连接AE,作CF⊥AD于F,DG⊥BC于G,则BE=CE=BC,证出△ABE是等边三角形,得出∠BAE=∠AEB=60°,AE=BE=CE,得出∠EAC=∠ECA==30°,证出∠BAC=∠BAE+∠EAC=90°,得出AC=AB,设AB=x,则AC=x,由直角三角形的性质得出CF=3,从而DF=3,设CG=a,AF=y,证明△ACF∽△CDG,得出,求出y=,由勾股定理得出y2=(x)2-32=3x2-9,b2=62-a2=102-(2x+a)2,(2x+a)2+b2=132,整理得出a=,进而得y=,得出[]2=3x2-9,解得x2=34-6,得出y2=()2,解得y=-3,得出AD=AF+DF=,由三角形面积即可得出答案.【详解】解:(1)∵AC⊥BC,AC⊥AD,∴∠ACB=∠CAD=90°,∵对角互余四边形ABCD中,∠B=60°,∴∠D=30°,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=1,∴∠BAC=30°,∴AB=2BC=2,AC=BC=,在Rt△ACD中,∠CAD=90°,∠D=30°,∴AD=AC=3,CD=2AC=2,∵S△ABC=•AC•BC=××1=,S△ACD═•AC•AD=××3=,∴S四边形ABCD=S△ABC+S△ACD=2,故答案为:2;(2)将△BAD绕点B顺时针旋转到△BCE,如图②所示:则△BCE≌△BAD,连接DE,作BH⊥DE于H,作CG⊥DE于G,作CF⊥BH于F.∴∠CFH=∠FHG=∠HGC=90°,∴四边形CFHG是矩形,∴FH=CG,CF=HG,∵△BCE≌△BAD,∴BE=BD=13,∠CBE=∠ABD,∠CEB=∠ADB,CE=AD=8,∵∠ABC+∠ADC=90°,∴∠DBC+∠CBE+∠BDC+∠CEB=90°,∴∠CDE+∠CED=90°,∴∠DCE=90°,在△BDE中,根据勾股定理可得:DE===10,∵BD=BE,BH⊥DE,∴EH=DH=5,∴BH===12,∴S△BED=•BH•DE=×12×10=60,S△CED=•CD•CE=×6×8=24,∵△BCE≌△BAD,∴S四边形ABCD=S△BCD+S△BCE=S△BED﹣S△CED=60﹣24=36;(3)取BC的中点E,连接AE,作CF⊥AD于F,DG⊥BC于G,如图③所示:则BE=CE=BC,∵BC=2AB,∴AB=BE,∵∠ABC=60°,∴△ABE是等边三角形,∴∠BAE=∠AEB=60°,AE=BE=CE,∴∠EAC=∠ECA=∠AEB=30°,∴∠BAC=∠BAE+∠EAC=90°,∴AC=AB,设AB=x,则AC=x,∵∠ADC=30°,∴CF=CD=3,DF=CF=3,设CG=a,AF=y,在四边形ABCD中,∠ABC+∠BCD+∠ADC+∠BAC+∠DAC=360°,∴∠DAC+∠BCD=180°,∵∠BCD+∠DCG=180°,∴∠DAC=∠DCG,∵∠AFC=∠CGD=90°,∴△ACF∽△CDG,∴=,即=,∴y=,在Rt△ACF中,Rt△CDG和Rt△BDG中,由勾股定理得:y2=(x)2﹣32=3x2﹣9,b2=62﹣a2=102﹣(2x+a)2,(2x+a)2+b2=132,整理得:x2+ax﹣16=0,∴a=,∴y==×=,∴[]2=3x2﹣9,整理得:x4﹣68x2+364=0,解得:x2=34﹣6,或x2=34+6(不合题意舍去),∴x2=34﹣6,∴y2=3(34﹣6)﹣9=93﹣18=93﹣2=()2,∴y=﹣3,∴AF=﹣3,∴AD=AF+DF=,∴△ACD的面积=AD×CF=××3=.【点睛】此题是四边形综合题,主要考查了新定义的理解和应用,相似三角形的判定和性质,勾股定理,等边三角形的判定与性质,旋转的性质,全等三角形的性质,含30°角的直角三角形的性质等知识;本题综合性强,有一定难度.22、纸盒的高为.【分析】设纸盒的高是,根据题意,其底面的长宽分别为(40-2x)和(30-2x),根据长方形面积公式列方程求解即可.【详解】解:设纸盒的高是.依题意,得.整理得.解得,(不合题意,舍去).答:纸盒的高为.【点睛】本题考查一元二次方程的应用,根据题意用含x的式子表示底面的长和宽,正确列方程,解方程是本题的解题关键.23、(1);(2)四边形ABCD面积有最大值.【分析】(1)已知B点坐标,易求得OB、OC的长,进而可将B、C的坐标代入抛物线中,求出待定系数的值,即可得出抛物线的解析式.
(2)根据A、C的坐标,易求得直线AC的解析式.由于AB、OC都是定值,则△ABC的面积不变,若四边形ABCD面积最大,则△ADC的面积最大;可过D作x轴的垂线,交AC于M,x轴于N;易得△ADC的面积是DM与OA积的一半,可设出N点的坐标,分别代入直线AC和抛物线的解析式中,即可求出DM的长,进而可得出四边形ABCD的面积与N点横坐标间的函数关系式,根据所得函数的性质即可求出四边形ABCD的最大面积.【详解】(1)∵B(1,0),∴OB=1;∵OC=3BO,∴C(0,﹣3);∵y=ax2+3ax+c过B(1,0)、C(0,﹣3),∴;解这个方程组,得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026台州市生态环境保护行政执法队编外招聘1人考试参考试题及答案解析
- 2026西北工业大学材料学院辐射探测材料与器件团队招聘1人(陕西)考试备考题库及答案解析
- 2026福建泉州市石狮商业运营发展有限公司招聘2人考试备考题库及答案解析
- 2026年贵州应用技术职业学院单招综合素质笔试备考题库带答案解析
- 2026湖南长沙市麓山国际洞阳实验学校公开招聘编外合同制教师考试备考题库及答案解析
- 2026新疆博尔塔拉州博乐市阳光聚合人力资源服务有限责任公司招聘4人考试参考题库及答案解析
- 2026四川九州电子科技股份有限公司招聘NPI岗测试成绩公示考试备考题库及答案解析
- 2025年河北邢台市中心血站第二批公开招聘编外工作人员1名考试参考题库及答案解析
- 2026北京中关村第三小学双新分校招聘考试备考题库及答案解析
- 2026年四川建筑职业技术学院单招职业技能考试参考题库附答案详解
- 基础土方回填施工工艺方案
- 征信修复合同范本
- 2025年苏州工业园区领军创业投资有限公司招聘备考题库及一套答案详解
- 天一大联考海南省2026届数学高二上期末统考试题含解析
- DB50∕T 1803-2025 乡村振兴劳务品牌人员等级评定 武陵山缝纫工
- 中煤集团机电装备部副部长管理能力考试题集含答案
- 党支部2026年度主题党日活动方案
- 福建省网络安全事件应急预案
- 五育融合课件
- 海姆立克急救课件 (完整版)
- 2025年互联网营销游戏化营销案例解析可行性研究报告
评论
0/150
提交评论