2022届广东省广州市高中名校高考数学全真模拟密押卷含解析_第1页
2022届广东省广州市高中名校高考数学全真模拟密押卷含解析_第2页
2022届广东省广州市高中名校高考数学全真模拟密押卷含解析_第3页
2022届广东省广州市高中名校高考数学全真模拟密押卷含解析_第4页
2022届广东省广州市高中名校高考数学全真模拟密押卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022高考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若复数,则()A. B. C. D.202.定义在R上的函数,,若在区间上为增函数,且存在,使得.则下列不等式不一定成立的是()A. B.C. D.3.若双曲线:的一条渐近线方程为,则()A. B. C. D.4.一辆邮车从地往地运送邮件,沿途共有地,依次记为,,…(为地,为地).从地出发时,装上发往后面地的邮件各1件,到达后面各地后卸下前面各地发往该地的邮件,同时装上该地发往后面各地的邮件各1件,记该邮车到达,,…各地装卸完毕后剩余的邮件数记为.则的表达式为().A. B. C. D.5.已知是虚数单位,则复数()A. B. C.2 D.6.已知集合,,则()A. B.C. D.7.为计算,设计了如图所示的程序框图,则空白框中应填入()A. B. C. D.8.已知x,,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件9.已知双曲线的一个焦点为,点是的一条渐近线上关于原点对称的两点,以为直径的圆过且交的左支于两点,若,的面积为8,则的渐近线方程为()A. B.C. D.10.如图是一个算法流程图,则输出的结果是()A. B. C. D.11.已知直四棱柱的所有棱长相等,,则直线与平面所成角的正切值等于()A. B. C. D.12.在钝角中,角所对的边分别为,为钝角,若,则的最大值为()A. B. C.1 D.二、填空题:本题共4小题,每小题5分,共20分。13.在中,已知是的中点,且,点满足,则的取值范围是_______.14.设满足约束条件,则的取值范围为__________.15.“直线l1:与直线l2:平行”是“a=2”的_______条件(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”).16.复数为虚数单位)的虚部为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前项和和通项满足.(1)求数列的通项公式;(2)已知数列中,,,求数列的前项和.18.(12分)数列的前项和为,且.数列满足,其前项和为.(1)求数列与的通项公式;(2)设,求数列的前项和.19.(12分)已知在平面直角坐标系中,曲线的参数方程为(为参数.).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为,曲线与直线其中的一个交点为,且点极径.极角(1)求曲线的极坐标方程与点的极坐标;(2)已知直线的直角坐标方程为,直线与曲线相交于点(异于原点),求的面积.20.(12分)已知数列中,(实数为常数),是其前项和,且数列是等比数列,恰为与的等比中项.(1)证明:数列是等差数列;(2)求数列的通项公式;(3)若,当时,的前项和为,求证:对任意,都有.21.(12分)已知直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,且曲线的左焦点在直线上.(Ⅰ)求的极坐标方程和曲线的参数方程;(Ⅱ)求曲线的内接矩形的周长的最大值.22.(10分)已知是等腰直角三角形,.分别为的中点,沿将折起,得到如图所示的四棱锥.(Ⅰ)求证:平面平面.(Ⅱ)当三棱锥的体积取最大值时,求平面与平面所成角的正弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】

化简得到,再计算模长得到答案.【详解】,故.故选:.【点睛】本题考查了复数的运算,复数的模,意在考查学生的计算能力.2.D【解析】

根据题意判断出函数的单调性,从而根据单调性对选项逐个判断即可.【详解】由条件可得函数关于直线对称;在,上单调递增,且在时使得;又,,所以选项成立;,比离对称轴远,可得,选项成立;,,可知比离对称轴远,选项成立;,符号不定,,无法比较大小,不一定成立.故选:.【点睛】本题考查了函数的基本性质及其应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.3.A【解析】

根据双曲线的渐近线列方程,解方程求得的值.【详解】由题意知双曲线的渐近线方程为,可化为,则,解得.故选:A【点睛】本小题主要考查双曲线的渐近线,属于基础题.4.D【解析】

根据题意,分析该邮车到第站时,一共装上的邮件和卸下的邮件数目,进而计算可得答案.【详解】解:根据题意,该邮车到第站时,一共装上了件邮件,需要卸下件邮件,则,故选:D.【点睛】本题主要考查数列递推公式的应用,属于中档题.5.A【解析】

根据复数的基本运算求解即可.【详解】.故选:A【点睛】本题主要考查了复数的基本运算,属于基础题.6.A【解析】

根据对数性质可知,再根据集合的交集运算即可求解.【详解】∵,集合,∴由交集运算可得.故选:A.【点睛】本题考查由对数的性质比较大小,集合交集的简单运算,属于基础题.7.A【解析】

根据程序框图输出的S的值即可得到空白框中应填入的内容.【详解】由程序框图的运行,可得:S=0,i=0满足判断框内的条件,执行循环体,a=1,S=1,i=1满足判断框内的条件,执行循环体,a=2×(﹣2),S=1+2×(﹣2),i=2满足判断框内的条件,执行循环体,a=3×(﹣2)2,S=1+2×(﹣2)+3×(﹣2)2,i=3…观察规律可知:满足判断框内的条件,执行循环体,a=99×(﹣2)99,S=1+2×(﹣2)+3×(﹣2)2+…+1×(﹣2)99,i=1,此时,应该不满足判断框内的条件,退出循环,输出S的值,所以判断框中的条件应是i<1.故选:A.【点睛】本题考查了当型循环结构,当型循环是先判断后执行,满足条件执行循环,不满足条件时算法结束,属于基础题.8.D【解析】

,不能得到,成立也不能推出,即可得到答案.【详解】因为x,,当时,不妨取,,故时,不成立,当时,不妨取,则不成立,综上可知,“”是“”的既不充分也不必要条件,故选:D【点睛】本题主要考查了充分条件,必要条件的判定,属于容易题.9.B【解析】

由双曲线的对称性可得即,又,从而可得的渐近线方程.【详解】设双曲线的另一个焦点为,由双曲线的对称性,四边形是矩形,所以,即,由,得:,所以,所以,所以,,所以,的渐近线方程为.故选B【点睛】本题考查双曲线的简单几何性质,考查直线与圆的位置关系,考查数形结合思想与计算能力,属于中档题.10.A【解析】

执行程序框图,逐次计算,根据判断条件终止循环,即可求解,得到答案.【详解】由题意,执行上述的程序框图:第1次循环:满足判断条件,;第2次循环:满足判断条件,;第3次循环:满足判断条件,;不满足判断条件,输出计算结果,故选A.【点睛】本题主要考查了循环结构的程序框图的结果的计算与输出,其中解答中执行程序框图,逐次计算,根据判断条件终止循环是解答的关键,着重考查了运算与求解能力,属于基础题.11.D【解析】

以为坐标原点,所在直线为x轴,所在直线为轴,所在直线为轴,建立空间直角坐标系.求解平面的法向量,利用线面角的向量公式即得解.【详解】如图所示的直四棱柱,,取中点,以为坐标原点,所在直线为x轴,所在直线为轴,所在直线为轴,建立空间直角坐标系.设,则,.设平面的法向量为,则取,得.设直线与平面所成角为,则,,∴直线与平面所成角的正切值等于故选:D【点睛】本题考查了向量法求解线面角,考查了学生空间想象,逻辑推理,数学运算的能力,属于中档题.12.B【解析】

首先由正弦定理将边化角可得,即可得到,再求出,最后根据求出的最大值;【详解】解:因为,所以因为所以,即,,时故选:【点睛】本题考查正弦定理的应用,余弦函数的性质的应用,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

由中点公式的向量形式可得,即有,设,有,再分别讨论三点共线和不共线时的情况,找到的关系,即可根据函数知识求出范围.【详解】是的中点,∴,即设,于是(1)当共线时,因为,①若点在之间,则,此时,;②若点在的延长线上,则,此时,.(2)当不共线时,根据余弦定理可得,解得,由,解得.综上,故答案为:.【点睛】本题主要考查学中点公式的向量形式和数量积的定义的应用,以及余弦定理的应用,涉及到函数思想和分类讨论思想的应用,解题关键是建立函数关系式,属于中档题.14.【解析】

由题意画出可行域,转化目标函数为,数形结合即可得到的最值,即可得解.【详解】由题意画出可行域,如图:转化目标函数为,通过平移直线,数形结合可知:当直线过点A时,直线截距最大,z最小;当直线过点C时,直线截距最小,z最大.由可得,由可得,当直线过点时,;当直线过点时,,所以.故答案为:.【点睛】本题考查了简单的线性规划,考查了数形结合思想,属于基础题.15.必要不充分【解析】

先求解直线l1与直线l2平行的等价条件,然后进行判断.【详解】“直线l1:与直线l2:平行”等价于a=±2,故“直线l1:与直线l2:平行”是“a=2”的必要不充分条件.故答案为:必要不充分.【点睛】本题主要考查充分必要条件的判定,把已知条件进行等价转化是求解这类问题的关键,侧重考查逻辑推理的核心素养.16.1【解析】试题分析:,即虚部为1,故填:1.考点:复数的代数运算三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)【解析】

(1)当时,利用可得,故可利用等比数列的通项公式求出的通项.(2)利用分组求和法可求数列的前项和.【详解】(1)当时,,所以,当时,,①,②所以,即,又因为,故,所以,所以是首项,公比为的等比数列,故.(2)由得:数列为等差数列,公差,,,.【点睛】本题考查数列的通项与求和,注意数列求和关键看通项的结构形式,如果通项是等差数列与等比数列的和,则用分组求和法;如果通项是等差数列与等比数列的乘积,则用错位相减法;如果通项可以拆成一个数列连续两项的差,那么用裂项相消法;如果通项的符号有规律的出现,则用并项求和法.18.(1),;(2).【解析】

(1)令可求得的值,令,由得出,两式相减可推导出数列为等比数列,确定该数列的公比,利用等比数列的通项公式可求得数列的通项公式,再利用对数的运算性质可得出数列的通项公式;(2)运用等差数列的求和公式,运用数列的分组求和和裂项相消求和,化简可得.【详解】(1)当时,,所以;当时,,得,即,所以,数列是首项为,公比为的等比数列,.;(2)由(1)知数列是首项为,公差为的等差数列,.,.所以.【点睛】本题考查数列的递推式的运用,注意结合等比数列的定义和通项公式,考查数列的求和方法:分组求和法和裂项相消求和,考查运算能力,属于中档题.19.(1)极坐标方程为,点的极坐标为(2)【解析】

(1)利用极坐标方程、普通方程、参数方程间的互化公式即可;(2)只需算出A、B两点的极坐标,利用计算即可.【详解】(1)曲线C:(为参数,),将代入,解得,即曲线的极坐标方程为,点的极坐标为.(2)由(1),得点的极坐标为,由直线过原点且倾斜角为,知点的极坐标为,.【点睛】本题考查极坐标方程、普通方程、参数方程间的互化以及利用极径求三角形面积,考查学生的运算能力,是一道基础题.20.(1)见解析(2)(3)见解析【解析】

(1)令可得,即.得到,再利用通项公式和前n项和的关系求解,(2)由(1)知,.设等比数列的公比为,所以,再根据恰为与的等比中项求解,(3)由(2)得到时,,,求得,再代入证明。【详解】(1)解:令可得,即.所以.时,可得,当时,所以.显然当时,满足上式.所以.,所以数列是等差数列,(2)由(1)知,.设等比数列的公比为,所以,恰为与的等比中项,所以,解得,所以(3)时,,,而时,,,所以当时,.当时,,∴对任意,都有,【点睛】本题主要考查数列的通项公式和前n项和的关系,等差数列,等比数列的定义和性质以及数列放缩的方法,还考查了转化化归的思想和运算求解的能力,属于难题,21.(Ⅰ)曲线的参数方程为:(为参数);的极坐标方程为;(Ⅱ)16.【解析】

(

I

)直接利用转换关系,把参数方程、极坐标方程和直角坐标方程之间进行转换;(

II

)利用三角函数关系式的恒等变换和正弦型函数的性质的应用,即可求出结果.【详解】(Ⅰ)由题意:曲线的直角坐标方程为:,所以曲线的参数方程为(为参数),因为直线的直角坐标方程为:,又因曲线的左焦点为,将其代入中,得到,所以的极坐标方程为.(Ⅱ)设椭圆的内接矩形的顶点为,,,,所以椭圆的内接矩形的周长为:,所以当时,即时,椭圆的内接矩形的周长取得最大值16.【点睛】本题考查了曲线的参数方程,极坐标方程与普通方程间的互化,三角函数关系式的恒等变换,正弦型函数的性质的应用,极径的应用,考查学生的求解运算能力和转化能力,属于基础题型.22.(Ⅰ)见解析.(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论