版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页2024-2025学年河北省石家庄市八校联考数学九上开学达标检测模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x,则下面所列方程中正确的是()A.289(1―2x)=256B.256(1+x)2=289C.289(1―x)2=256D.289―289(1―x)―289(1―x)2=2562、(4分)下图是外周边缘为正八边形的木花窗挂件,则这个八边形的每个内角为()A. B. C. D.3、(4分)关于反比例函数y=的下列说法正确的是()①该函数的图象在第二、四象限;②A(x1、y1)、B(x2、y2)两点在该函数图象上,若x1<x2,则y1<y2;③当x>2时,则y>-2;④若反比例函数y=与一次函数y=x+b的图象无交点,则b的范围是-4<b<4.A.①③ B.①④ C.②③ D.②④4、(4分)下列计算正确的是()A.3+2=5 B.C.12÷3=45、(4分)如图,已知正方形ABCD边长为1,,,则有下列结论:①;②点C到EF的距离是2-1;③的周长为2;④,其中正确的结论有()A.4个 B.3个 C.2个 D.1个6、(4分)关于x的一元二次方程有两个不相等的实数根,则实数m的取值范围为()A. B. C. D.7、(4分)如图,直线和直线相交于点,则不等式的解集为()A. B. C. D.8、(4分)如图,在菱形ABCD中,对角线AC与BD相交于点O,若BC=3,∠ABC=60°,则BD的长为()A.2 B.3 C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)将一副三角尺如图所示叠放在一起,若AB=8cm,则阴影部分的面积是_____cm1.10、(4分)菱形ABCD的两条对角线长分别为6cm和8cm,则菱形ABCD的面积为_____;周长为______.11、(4分)写一个无理数,使它与的积是有理数:________。12、(4分)在弹性限度内,弹簧的长度是所挂物体质量的一次函数,当所挂物体的质量分别为和时,弹簧长度分别为和,当所挂物体的质量为时弹簧长________厘米?13、(4分)不改变分式的值,使分子、分母的第一项系数都是正数,则=_____.三、解答题(本大题共5个小题,共48分)14、(12分)已知是方程的两个实数根,且.(1)求的值;(2)求的值.15、(8分)作图题:在△ABC中,点D是AB边的中点,请你过点D作△ABC的中位线DE交AC于点E.(不写作法,保留作图痕迹)16、(8分)如图所示,在中,,,,点从点出发沿方向以每秒2个单位长度的速度向点匀速运动,同时点从点出发沿方向以每秒1个单位长度的速度向点匀速运动,当其中一点到达终点时,另一个点也随之停止运动.设点、运动的时间是秒,过点作于点,连接、.(1)求证:;(2)四边形能够成为菱形吗?若能,求出的值;若不能,请说明理由;(3)当________时,为直角三角形.17、(10分)如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.18、(10分)如图1,,是线段上的一个动点,分别以为边,在的同侧构造菱形和菱形,三点在同一条直线上连结,设射线与射线交于.(1)当在点的右侧时,求证:四边形是平形四边形.(2)连结,当四边形恰为矩形时,求的长.(3)如图2,设,,记点与之间的距离为,直接写出的所有值.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在中,,,点、分别是边、上的动点.连接、,点、分别是、的中点,连接.则的最小值为________.20、(4分)将一次函数的图象向上平移个单位得到图象的函数关系式为________________.21、(4分)关于x的一元二次方程(x+1)(x+7)=-5的根为_______________.22、(4分)如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1、l2之间的距离为2,l2、l3之间的距离为3,则AC的长是_________;23、(4分)若点P(-2,2)是正比例函数y=kx(k≠0)图象上的点,则此正比例函数的解析式为______.二、解答题(本大题共3个小题,共30分)24、(8分)如图,AE∥BF,AC平分∠BAE,交BF于点C.(1)求证:AB=BC;(2)尺规作图:在AE上找一点D,使得四边形ABCD为菱形(不写作法,保留作图痕迹)25、(10分)平面直角坐标系中,设一次函数的图象是直线.(1)如果把向下平移个单位后得到直线,求的值;(2)当直线过点和点时,且,求的取值范围;(3)若坐标平面内有点,不论取何值,点均不在直线上,求所需满足的条件.26、(12分)如图中的虚线网格我们称为正三角形网格,它的每一个小三角形都是边长为1个单位长度的正三角形,这样的三角形称为单位正三角形.(1)图①中,已知四边形ABCD是平行四边形,求△ABC的面积和对角线AC的长;(2)图②中,求四边形EFGH的面积.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
试题分析:两次降价后的商品的售价=降价前的商品的售价×(1-平均每次降价的百分率)2.由题意可列方程为.选:C.考点:根据实际问题列方程2、D【解析】
根据多边形的内角和公式,列式计算即可得解.【详解】解:这个正八边形每个内角的度数=×(8-2)×180°=135°.故选:D本题考查了多边形的内角与外角,熟记多边形的内角和公式是解题的关键.3、B【解析】【分析】根据反比例函数的图象与性质逐一进行判断即可得.【详解】①k=-4<0,图象在二、四象限,故①正确;②若A(x1、y1)在二象限,B(x2、y2)在四象限,满足了x1<x2,但y1>y2,故②错误;③当x=2时,y=-2,因为在每一象限内,y随着x的增大而增大,所以当x>2时,y>-2,故③错误;④联立,则有,整理得:x2+bx+4=0,因为两函数图象无交点,则方程x2+bx+4=0,无实数根,即b2-4×4<0,所以-4<b<4,故选B.【点睛】本题考查了反比例函数的图象与性质,熟练掌握反比例函数的图象与性质是解题的关键.4、D【解析】
按二次根式的运算法则分别计算即可.【详解】解:3+2已是最简,故A错误;53·52=256,故B错误;12÷3=4=2,故选择D.本题考查了二次根式的运算.5、C【解析】
先证明Rt△ABE≌Rt△ADF得到∠1=∠2,易得∠1=∠2=∠22.5°,于是可对①进行判断;连接EF、AC,它们相交于点H,如图,利用Rt△ABE≌Rt△ADF得到BE=DF,则CE=CF,接着判断AC垂直平分EF,AH平分∠EAF,于是利用角平分线的性质定理得到EB=EH,FD=FH,则可对③④进行判断;设BE=x,则EF=2x,CE=1-x,利用等腰直角三角形的性质得到2x=(1-x),解方程,则可对②进行判断.【详解】解:∵四边形ABCD为正方形,
∴AB=AD,∠BAD=∠B=∠D=90°,
在Rt△ABE和Rt△ADF中,,
∴Rt△ABE≌Rt△ADF(HL),
∴∠1=∠2,
∵∠EAF=45°,
∴∠1=∠2=∠22.5°,所以①正确;
连接EF、AC,它们相交于点H,如图,
∵Rt△ABE≌Rt△ADF,
∴BE=DF,
而BC=DC,
∴CE=CF,
∵AE=AF,
∴AC垂直平分EF,AH平分∠EAF,
∴EB=EH,FD=FH,
∴BE+DF=EH+HF=EF,所以④错误;
∴△ECF的周长=CE+CF+EF=CE+BE+CF+DF=CB+CD=1+1=2,所以③正确;
设BE=x,则EF=2x,CE=1-x,
∵△CEF为等腰直角三角形,
∴EF=CE,即2x=(1-x),解得x=-1,
∴BE=-1,
Rt△ECF中,EH=FH,
∴CH=EF=EH=BE=-1,
∵CH⊥EF,
∴点C到EF的距离是-1,
所以②错误;
本题正确的有:①③;
故选:C.本题考查四边形的综合题:熟练掌握正方形的性质和角平分线的性质定理.解题的关键是证明AC垂直平分EF.6、B【解析】
根据方程有两个不等的实数根,故△>0,得不等式解答即可.【详解】试题分析:由已知得△>0,即(﹣3)2﹣4m>0,解得m<.故选B.此题考查了一元二次方程根的判别式.7、C【解析】
写出直线y=kx(k≠0)在直线y=mx+n(m≠0)上方部分的x的取值范围即可.【详解】解:由图可知,不等式kx≥mx+n的解集为x≥2;故选:C.本题考查了一次函数与一元一次不等式,此类题目,利用数形结合的思想求解是解题的关键.8、C【解析】
只要证明△ABC是正三角形,由三角函数求出BO,即可求出BD的长.【详解】解:∵四边形ABCD菱形,∴AC⊥BD,BD=2BO,AB=BC,∵∠ABC=60°,∴△ABC是正三角形,∴∠BAO=60°,∴BO=sin60°•AB=3×,∴BD=.故选C.本题主要考查解直角三角形和菱形的性质的知识点,解答本题的关键是熟记菱形的对角线垂直平分,本题难度一般.二、填空题(本大题共5个小题,每小题4分,共20分)9、2【解析】
根据含30度角的直角三角形的性质求出AC的长,然后证明∠AFC=45°,得到CF的长,再利用三角形面积公式计算即可.【详解】解:∵∠B=30°,∠ACB=90°,∠E=90°,AB=2cm,∴AC=4cm,BC∥ED,∴∠AFC=∠D=45°,∴AC=CF=4cm,∴阴影部分的面积=×4×4=2(cm1),故答案为:2.本题考查了含30度角的直角三角形的性质,求出AC=CF=4cm是解答此题的关键.10、24cm220cm【解析】分析:菱形的面积等于对角线积的一半;菱形的对角线互相垂直且平分构建直角三角形后,用勾股定理求.详解:根据题意得,菱形的面积为×6×8=24cm2;菱形的周长为4×=4×5=20cm.故答案为24cm2;20cm.点睛:本题考查了菱形的性质,菱形的对角线互相平分且垂直,菱形的面积等于对角线积的一半,菱形中常常根据对角线的性质构造直角三角形,用勾股定理求线段的长.11、答案不唯一,如【解析】
找出已知式子的分母有理化因式即可.【详解】解:因为()()=4-3=1,积是有理数,
故答案为:此题考查了分母有理化,弄清有理化因式的定义是解本题的关键.12、【解析】
设y与x的函数关系式为y=kx+b,由待定系数法求出其解即可;把x=4时代入解析式求出y的值即可.【详解】设y与x的函数关系式为y=kx+b,由题意,得:,解得:.故y与x之间的关系式为:y=x+14.1;当x=4时,y=0.1×4+14.1=16.1.故答案为:16.1此题考查根据实际问题列一次函数关系式,解题关键在于列出方程13、【解析】
根据分式的基本性质即可求出答案.【详解】原式==,故答案为:本题考查分式的基本性质,分式的基本性质是分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变;熟练掌握分式的基本性质是解题关键.三、解答题(本大题共5个小题,共48分)14、(1);(2)【解析】
(1)利用根与系数的关系得到x1+x2=2,x1x2=q,则通过解方程组,可得,然后计算q的值;(2)先利用一元二次方程根的定义得到x12=2x1+2,则x13=6x1+4,所以x13-3x12-2x2+3化为-2x2+1,然后把x2=1+代入计算即可.【详解】解:(1)根据题意得x1+x2=2,x1x2=q,由,可得.所以,.(2)∵x1是方程x2-2x-2=0的实数根,,∴,即,.本题考查根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,.15、如图所示,线段DE即为所求,见解析.【解析】
作AC的垂直平分线,再连接DE即可.【详解】如图所示,线段DE即为所求:此题考查作图问题,关键是根据垂直平分线的作图解答.16、(1)详见解析;(2)能;(3)2或秒【解析】
(1)在中,,,由已知条件求证;(2)求得四边形为平行四边形,若使平行四边形为菱形则需要满足的条件及求得;(3)分三种情况:①时,四边形为矩形.在直角三角形中求得即求得.②时,由(2)知,则得,求得.③时,此种情况不存在.【详解】(1)在中,∴又∵∴(2)能.理由如下:∵,∴又∵∴四边形为平行四边形在中,∴又∵∴∴,∴当时,为菱形∴AD=∴,即秒时,四边形为菱形(3)①时,四边形为矩形.在中,,.即,.②时,由(2)四边形为平行四边形知,.,.则有,.③当时,此种情况不存在.综上所述,当秒或秒时,为直角三角形.本题考查了菱形的性质,考查了菱形是平行四边形,考查了菱形的判定定理,以及菱形与矩形之间的联系.难度适宜,计算繁琐.17、(1)C(0,1).(2)y=x+1.(3)P1(4,3),P2()P3(),P4().【解析】试题分析:(1)通过解方程x2﹣14x+42=0可以求得OC=1,OA=2.则C(0,1);(2)设直线MN的解析式是y=kx+b(k≠0).把点A、C的坐标分别代入解析式,列出关于系数k、b的方程组,通过解方程组即可求得它们的值;(3)需要分类讨论:PB为腰,PB为底两种情况下的点P的坐标.根据等腰三角形的性质、两点间的距离公式以及一次函数图象上点的坐标特征进行解答.试题解析:(1)解方程x2-14x+42=0得x1=1,x2=2∵OA,OC(OA>OC)的长分别是一元二次方程x2-14x+42=0的两个实数根∴OC=1,OA=2∴C(0,1)(2)设直线MN的解析式是y=kx+b(k≠0)由(1)知,OA=2,则A(2,0)∵点A、C都在直线MN上∴解得,∴直线MN的解析式为y=-x+1(3)∵A(2,0),C(0,1)∴根据题意知B(2,1)∵点P在直线MNy=-x+1上∴设P(a,--a+1)当以点P,B,C三点为顶点的三角形是等腰三角形时,需要分类讨论:①当PC=PB时,点P是线段BC的中垂线与直线MN的交点,则P1(4,3);②当PC=BC时,a2+(-a+1-1)2=14解得,a=±,则P2(-,),P3(,)③当PB=BC时,(a-2)2+(-a+1-1)2=14解得,a=,则-a+1=-∴P4(,)综上所述,符合条件的点P有:P1(4,3),P2(-,),P3(,),P4(,-)考点:一次函数综合题.18、(1)见解析;(2)FG=;(3)d=14或.【解析】
(1)由菱形的性质可得AP∥EF,∠APF=∠EPF=∠APE,PB∥CD,∠CDB=∠PDB=∠CDP,由平行线的性质可得∠FPE=∠BDP,可得PF∥BD,即可得结论;(2)由矩形的性质和菱形的性质可得FG=PB=2EF=2AP,即可求FG的长;(3)分两种情况讨论,由勾股定理可求d的值;点G在DP的右侧,连接AC,过点C作CH⊥AB,交AB延长线于点H;若点G在DP的左侧,连接AC,过点C作CH⊥AB,交AB延长线于点H.【详解】(1)∵四边形APEF是菱形∴AP∥EF,∠APF=∠EPF=∠APE,∵四边形PBCD是菱形∴PB∥CD,∠CDB=∠PDB=∠CDP∴∠APE=∠PDC∴∠FPE=∠BDP∴PF∥BD,且AP∥EF∴四边形四边形FGBP是平形四边形;(2)若四边形DFPG恰为矩形∴PD=FG,PE=DE,EF=EG,∴PD=2EF∵四边形APEF是菱形,四边形PBCD是菱形∴AP=EF,PB=PD∴PB=2EF=2AP,且AB=10∴FG=PB=.(3)如图,点G在DP的右侧,连接AC,过点C作CH⊥AB,交AB延长线于点H,∵FE=2EG,∴PB=FG=3EG,EF=AP=2EG∵AB=10∴AP+PB=5EG=10∴EG=2,∴AP=4,PB=6=BC,∵∠ABC=120°,∴∠CBH=60°,且CH⊥AB∴BH=BC=3,CH=BH=3∴AH=13∴AC==14若点G在DP的左侧,连接AC,过点C作CH⊥AB,交AB延长线于点H∵FE=2EG,∴PB=FG=EG,EF=AP=2EG∵AB=10,∴3EG=10∴EG=∴BP=BC=∵∠ABC=120°,∴∠CBH=60°,且CH⊥AB∴BH=BC=,CH=BH=∴AH=∴AC=综上所述:d=14或.本题考查菱形的性质、平行线的性质、平行四边形的判定及勾股定理,解题的关键是掌握菱形的性质、平行线的性质、平行四边形的判定及勾股定理的计算.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】
连接AG,利用三角形中位线定理,可知,求出AG的最小值即可解决问题.【详解】解:如图1,连接,∵点、分别是、的中点,∴,∴的最小值,就是的最小值,当时,最小,如图2,中,,∴,∵,∴,,∴,∴的最小值是.故答案为:.本题考查平行四边形的性质、三角形的中位线定理、垂线段最短等知识,解题的关键是学会添加常用辅助线,本题的突破点是确定EF的最小值,就是AG的最小值,属于中考填空题中的压轴题.20、.【解析】
根据直线y=kx+b向上平移m(m>0)个单位所得直线解析式为y=kx+b+m求解.【详解】解:把一次函数的图象向上平移3个单位后,得到的图象对应的函数关系式为.故答案为:.本题考查了一次函数图象与几何变换:直线y=kx+b向上平移m(m>0)个单位所得直线解析式为y=kx+b+m,直线y=kx+b向下平移m(m>0)个单位所得直线解析式为y=kx+b-m.21、【解析】
整理成一般式后,利用因式分解法求解可得.【详解】解:整理得:x2+8x+12=0,
(x+2)(x+1)=0,
x+2=0,x+1=0,
x1=-2,x2=-1.故答案为:.本题考查因式分解法解一元二次方程,能把一元二次方程转化成一元一次方程是解题的关键.22、【解析】
首先作AD⊥l3于D,作CE⊥l3于E,再证明△ABD≌△BCE,因此可得BE=AD=3,再结合勾股定理可得AC的长.【详解】作AD⊥l3于D,作CE⊥l3于E,∵∠ABC=90°,∴∠ABD+∠CBE=90°,又∠DAB+∠ABD=90°,∴∠BAD=∠CBE,又AB=BC,∠ADB=∠BEC.∴△ABD≌△BCE,∴BE=AD=3,在Rt△BCE中,根据勾股定理,得BC=,在Rt△ABC中,根据勾股定理,得AC=故答案为本题主要考查直角三角形的综合问题,关键在于证明三角形的全等,这类题目是固定的解法,一定要熟练掌握.23、y=-x【解析】
直接把点(-2,2)代入正比例函数y=kx(k≠0),求出k的数值即可.【详解】把点(-2,2)代入y=kx得2=-2k,k=-1,所以正比例函数解析式为y=-x.故答案为:y=-x.本题考查了待定系数法求正比例函数解析式:设正比例函数解析式为y=kx(k≠0),然后把正比例函数图象上一个点的坐标代入求出k即可.二、解答题(本大题共3个小题,共30分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电机与电气控制技术 课件 任务7.2三菱变频器基本操作
- 《GBT 22330.2-2008无规定动物疫病区标准 第2部分:无口蹄疫区》专题研究报告 长文
- 深刻学习领悟“五个必须”做好新形势下经济工作课件
- 基孔肯雅热诊疗方案总结2026
- 道路安全培训表格课件
- 道路交通安全课件
- 2026年河北省高职单招语文试题解析及答案
- 道路交通安全培训会标课件
- 2026年福建高职单招职业适应性测试题库试题附答案
- 2025血液危重症患者诊疗管理共识(附实践指南)课件
- 2026长治日报社工作人员招聘劳务派遣人员5人参考题库及答案1套
- 2026年菏泽学院单招职业倾向性考试题库附答案解析
- 实际问题与一次函数课件2025-2026学年人教版八年级数学下册
- 2025年天津科技大学毛泽东思想和中国特色社会主义理论体系概论期末考试模拟题及答案1套
- 2024年盐城市体育局直属事业单位招聘真题
- 南方航空安全员培训
- 2025-2026学年岭南美版(新教材)初中美术七年级上册期末综合测试卷及答案
- DB11∕T 2398-2025 水利工程巡视检查作业规范
- 2025秋国家开放大学《政府经济学》期末机考精准复习题库
- PCB设计规范-MD元器件封装库尺寸要求
- 番茄的营养及施肥
评论
0/150
提交评论