2025届江苏省南京市东山外国语学校数学八年级第一学期期末质量检测模拟试题含解析_第1页
2025届江苏省南京市东山外国语学校数学八年级第一学期期末质量检测模拟试题含解析_第2页
2025届江苏省南京市东山外国语学校数学八年级第一学期期末质量检测模拟试题含解析_第3页
2025届江苏省南京市东山外国语学校数学八年级第一学期期末质量检测模拟试题含解析_第4页
2025届江苏省南京市东山外国语学校数学八年级第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省南京市东山外国语学校数学八年级第一学期期末质量检测模拟试题质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.2.下列等式变形是因式分解的是()A.﹣a(a+b﹣3)=a2+ab﹣3aB.a2﹣a﹣2=a(a﹣1)﹣2C.﹣4a2+9b2=﹣(2a+3b)(2a﹣3b)D.2x+1=x(2+)3.如图,在中,,是的平分线,若,,则为()A. B. C. D.4.某商场对上周末某品牌运动服的销售情况进行了统计,如下表所示:经理决定本周进货时多进一些红色的,可用来解释这一现象的统计知识是()A.平均数 B.中位数 C.众数 D.平均数与中位数5.下列各数是无理数的是()A.3.14 B. C. D.6.如图,,,,则度数是()A. B. C. D.7.分式有意义时x的取值范围是()A.x≠1 B.x>1 C.x≥1 D.x<18.在共有l5人参加的演讲加比赛中,参赛选手的成绩各不相同,因此选手要想知道自己是否进入前八名,只需了解自己的成绩以及全部成绩的A.平均数 B.众数 C.中位数 D.方差9.据益阳气象部门记载,2018年6月30日益阳市最高气温是33℃,最低气温是24℃,则当天益阳市气温(℃)的变化范围是()A. B. C. D.10.下列各组数为勾股数的是()A.7,12,13 B.3,4,7 C.3,4,6 D.8,15,1711.函数y=3x+1的图象一定经过点()A.(3,5) B.(-2,3) C.(2,5) D.(0,1)12.已知x+y=5,xy=6,则x2+y2的值是()A.1B.13C.17D.25二、填空题(每题4分,共24分)13.某种病菌的形状为球形,直径约是,用科学记数法表示这个数为______.14.观察下列各式:1×3+1=4=222×4+1=9=323×5+1=16=424×6+1=25=52……请你把发现的规律用含正整数n的等式表示为___________.15.若关于的一元二次方程有实数根,则的取值范围是_______.16.如图,已知,要使,还需添加一个条件,则可以添加的条件是.(只写一个即可,不需要添加辅助线)17.已知直角三角形的两条直角边分别为5和12,则其斜边上的中线长为_____.18.“同位角相等”的逆命题是__________________________.三、解答题(共78分)19.(8分)已知a+b=2,求()•的值.20.(8分)小敏与同桌小颖在课下学习中遇到这样一道数学题:“如图(1),在等边三角形中,点在上,点在的延长线上,且,试确定线段与的大小关系,并说明理由”.小敏与小颖讨论后,进行了如下解答:(1)取特殊情况,探索讨论:当点为的中点时,如图(2),确定线段与的大小关系,请你写出结论:_____(填“”,“”或“”),并说明理由.(2)特例启发,解答题目:解:题目中,与的大小关系是:_____(填“”,“”或“”).理由如下:如图(3),过点作EF∥BC,交于点.(请你将剩余的解答过程完成)(3)拓展结论,设计新题:在等边三角形中,点在直线上,点在直线上,且,若△的边长为,,求的长(请你画出图形,并直接写出结果).21.(8分)等腰Rt△ABC中,∠BAC=90°,点A、点B分别是y轴、x轴上的两个动点,点C在第三象限,直角边AC交x轴于点D,斜边BC交y轴于点E.(1)若A(0,1),B(2,0),画出图形并求C点的坐标;(2)若点D恰为AC中点时,连接DE,画出图形,判断∠ADB和∠CDE大小关系,说明理由.22.(10分)计算(1)(2)23.(10分)(1)计算:;(2)解分式方程:.24.(10分)在如图所示的平面直角坐标系中,描出点A(3,2)和点B(-1,4).(1)求点A(3,2)关于x轴的对称点C的坐标;(2)计算线段BC的长度.25.(12分)如图1,△ABC是边长为8的等边三角形,AD⊥BC下点D,DE⊥AB于点E(1)求证:AE=3EB;(2)若点F是AD的中点,点P是BC边上的动点,连接PE,PF,如图2所示,求PE+PF的最小值及此时BP的长;(3)在(2)的条件下,连接EF,若AD=,当PE+PF取最小值时,△PEF的面积是.26.材料一:我们可以将任意三位数记为,(其中、、分别表示该数的百位数字,十位数字和个位数字,且),显然.材料二:若一个三位数的百位数字,十位数字和个位数字均不为0,则称之为初始数,比如123就是一个初始数,将初始数的三个数位上的数字交换顺序,可产生出5个新的初始数,比如由123可以产生出132,213,231,312,321这5个新初始数,这6个初始数的和成为终止数.(1)求初始数125生成的终止数;(2)若一个初始数,满足,且,记,,,若,求满足条件的初始数的值.

参考答案一、选择题(每题4分,共48分)1、D【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A、不是轴对称图形,故A不符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、是轴对称图形,故D符合题意.故选D.【点睛】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2、C【分析】根据因式分解的定义逐个判断即可.【详解】解:A、右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;B、右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;C、符合因式分解的定义,是因式分解,故本选项符合题意;D、右边不是几个整式的积的形式(含有分式),不是因式分解,故本选项不符合题意;故选:C.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.3、A【分析】作DE⊥AB,根据角平分线的性质得到DE=CD,再根据勾股定理及三角形的面积公式即可求解.【详解】如图,作DE⊥AB,∵是的平分线,∴DE=CD∵在中,,,,∴AB=∵,∴=AB:AC=10:6=故选A.【点睛】此题主要考查角平分线的性质,解题的关键是熟知角平分线的性质及面积的公式.4、C【分析】商场经理最值得关注的应该是爱买哪种颜色运动装的人数最多,即众数.【详解】由于销售最多的颜色为红色,且远远多于其他颜色,所以选择多进红色运动装的主要根据是:众数.

故选:C.【点睛】本题主要考查了统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.5、D【分析】根据无理数的定义进行判断即可.【详解】A、3.14是有限小数,是有理数;B、,是有理数;C、,是有理数;D、,属于开方开不尽的数,是无理数;故选D.【点睛】本题考查无理数的定义和分类,无限不循环小数是无理数.6、C【分析】延长BC交AD于点E,根据三角形外角的性质可求得∠BED=110°,再根据三角形外角的性质得∠BCD=∠BED+∠D,从而可求得∠D的度数.【详解】延长BC交AD于点E,如图所示,∵∠BED=∠B+∠A,且,,∴∠BED=80°+30°=110°,又∵∠BCD=∠BED+∠D,∴∠D=∠BCD-∠BED=130°-110°=20°.故选:C.【点睛】此题主要考查了三角形外角的性质,熟练掌握三角形外角的性质是解此题的关键.7、A【解析】试题解析:根据题意得:x−1≠0,解得:x≠1.故选A.点睛:分式有意义的条件:分母不为零.8、C【解析】分析:此题是中位数在生活中的运用,知道自己的成绩以及全部成绩的中位数就可知道自己是否进入前8名.解答:解:15名参赛选手的成绩各不相同,第8名的成绩就是这组数据的中位数所以选手知道自己的成绩和中位数就可知道自己是否进入前8名.故选C.9、D【解析】根据题意和不等式的定义,列不等式即可.【详解】解:根据题意可知:当天益阳市气温(℃)的变化范围是故选D.【点睛】此题考查的是不等式的定义,掌握不等式的定义是解决此题的关键.10、D【分析】三个正整数,其中两个较小的数的平方和等于最大的数的平方,则这三个数就是勾股数,据此判断即可.【详解】解:A、不是勾股数,因为72+122≠132;B、不是勾股数,因为32+42≠72;C、不是勾股数,因为32+42≠62;D、是勾股数,因为82+152=172,且8,15,17是正整数.故选:D.【点睛】本题考查了勾股定理中勾股数的意义,理解掌握其判断方法是关键.11、D【分析】根据一次函数图象上点的坐标特点把各点分别代入函数解析式即可.【详解】A.∵当x=3时,,∴(3,5)不在函数图像上;B.∵当x=-2时,,∴(-2,3)不在函数图像上;C.∵当x=2时,,∴(2,5)不在函数图像上;D.∵当x=0时,,∴(0,1)在函数图像上.故选:D.【点睛】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.12、B【解析】将x+y=5两边平方,利用完全平方公式化简,把xy的值代入计算,即可求出所求式子的值.【详解】解:将x+y=5两边平方得:(x+y)2=x2+2xy+y2=25,将xy=6代入得:x2+12+y2=25,则x2+y2=1.故选:B.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.二、填空题(每题4分,共24分)13、【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】0.000000102的小数点向右移动7位得到1.02,所以0.000000102用科学记数法表示为,故答案为.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14、(n-1)(n+1)+1=n1.【详解】解:等式的左边是相差为1的两个数相乘加1,右边是两个数的平均数的平方,由题,∵1×3+1=11;3×5+1=41;5×7+1=61;7×9+1=81,∴规律为:(n-1)(n+1)+1=n1.故答案为:(n-1)(n+1)+1=n1.15、且【分析】根据一元二次方程的定义和判别式的性质计算,即可得到答案.【详解】关于的一元二次方程有实数根∴∴,即且.【点睛】本题考查了一元二次方程的知识;解题的关键是熟练掌握一元二次方程的定义和判别式的性质,从而完成求解.16、可添∠ABD=∠CBD或AD=CD.【分析】由AB=BC结合图形可知这两个三角形有两组边对应相等,添加一组边利用SSS证明全等,也可以添加一对夹角相等,利用SAS证明全等,据此即可得答案.【详解】.可添∠ABD=∠CBD或AD=CD,①∠ABD=∠CBD,在△ABD和△CBD中,∵,∴△ABD≌△CBD(SAS);②AD=CD,在△ABD和△CBD中,∵,∴△ABD≌△CBD(SSS),故答案为∠ABD=∠CBD或AD=CD.【点睛】本题考查了三角形全等的判定,结合图形与已知条件灵活应用全等三角形的判定方法是解题的关键.熟记全等三角形的判定方法有:SSS,SAS,ASA,AAS.17、6.1.【分析】利用勾股定理求出斜边,再利用直角三角形中,斜边上的中线等于斜边的一半,便可得到答案.【详解】解:斜边长为:故斜边上的中线为斜边的一半,故为6.1故答案为:6.1【点睛】本题考查勾股定理应用,以及直角三角形斜边上的中线为斜边的一半,掌握这两个知识点是解题的关键.18、如果两个角相等,那么这两个角是同位角.【解析】因为“同位角相等”的题设是“两个角是同位角”,结论是“这两个角相等”,所以命题“同位角相等”的逆命题是“相等的两个角是同位角”.三、解答题(共78分)19、【分析】首先把该分式进行化简,把括号里面的分式进行通分,然后把括号外面的分母由完全平方差和完全平方和的互化公式,可把分母化成,最后进行相同因式的约分得到化简结果,再把整体代入求值.【详解】解:原式=当时原式=【点睛】本题考查了分式的化简求值,化简过程需要用到通分约分,通分时要找准最简公分母,约分时先把分子分母因式分解,得到各个因式乘积的形式,再找相同的因式进行约分得到最简分式.代入求值时,要有整体代入的思维.20、(1),理由详见解析;(2),理由详见解析;(3)3或1【分析】(1)根据等边三角形的性质、三线合一的性质证明即可;(2)根据等边三角形的性质,证明△≌△即可;(3)注意区分当点在的延长线上时和当点在的延长线上时两种情况,不要遗漏.【详解】解:(1),理由如下:,∵△是等边三角形,,点为的中点,,,,,,;故答案为:;(2),理由如下:如图3:∵△为等边三角形,且EF∥BC,,,;;,,,在△与△中,,∴△≌△(AAS),,∴△为等边三角形,,.(3)①如图4,当点在的延长线上时,过点作EF∥BC,交的延长线于点:则,;,;∵△为等边三角形,,,,;而,,;在△和△中,,∴△≌△(AAS),;∵△为等边三角形,,,;②如图5,当点在的延长线上时,过点作EF∥BC,交的延长线于点:类似上述解法,同理可证:,,.【点睛】本题考查等边三角形的性质、全等三角形的判定和性质.熟练掌握等边三角形的性质,构造合适的全等三角形是解题的关键.21、(1)作图见解析,C(﹣1,﹣1);(2)∠ADB=∠CDE.理由见解析.【分析】(1)过点C作CF⊥y轴于点F通过证明△ACF≌△BAO得CF=OA=1,AF=OB=2,求得OF的值,就可以求出C的坐标;(2)过点C作CG⊥AC交y轴于点G,先证明△ACG≌△BAD就可以得出CG=AD=CD,∠DCE=∠GCE=45°,再证明△DCE≌△GCE就可以得出结论.【详解】解:(1)过点C作CF⊥y轴于点F,如图1所示:,∴∠AFC=90°,∴∠CAF+∠ACF=90°.∵△ABC是等腰直角三角形,∠BAC=90°,∴AC=AB,∠CAF+∠BAO=90°,∠AFC=∠BAC,∴∠ACF=∠BAO.在△ACF和△BAO中,∵,∴△ACF≌△BAO(AAS),∴CF=OA=1,AF=OB=2,∴OF=1,∴C(﹣1,﹣1);(2)∠ADB=∠CDE.理由如下:证明:过点C作CG⊥AC交y轴于点G,如图2所示:,∴∠ACG=∠BAC=90°,∴∠AGC+∠GAC=90°.∵∠CAG+∠BAO=90°,∴∠AGC=∠BAO.∵∠ADO+∠DAO=90°,∠DAO+∠BAO=90°,∴∠ADO=∠BAO,∴∠AGC=∠ADO.在△ACG和△BAD中,,∴△ACG≌△BAD(AAS),∴CG=AD=CD.∵∠ACB=∠ABC=45°,∴∠DCE=∠GCE=45°,在△DCE和△GCE中,,∴△DCE≌△GCE(SAS),∴∠CDE=∠CGE,∴∠ADB=∠CDE.【点睛】本题考查了全等三角形的判定与性质的运用,等腰直角三角形的性质的运用,直角三角形的性质的运用,解答时证明三角形全等是关键.22、(1);(2)【分析】(1)先根据二次根式、绝对值和负整数指数幂的性质化简,然后再进行计算;(2)先化简各二次根式,然后再进行计算.【详解】解:(1)原式;(2)原式.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.23、(1);(2)x=1.【分析】(1)原式括号中两项通分并利用同分母分式的减法法则计算,利用除法法则变形,约分即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1)原式=[=•=;(2)方程两边乘(x+2)(x﹣1),得x(x﹣1)﹣(x+2)(x﹣1)=x+2,整理得:x2﹣x﹣(x2+x﹣2)=x+2解得,x=1,检验:当x=1时,(x+2)(x﹣1)≠1,所以,原分式方程的解为x=1.【点睛】此题考查了解分式方程,以及分式的混合运算,熟练掌握运算法则是解本题的关键.24、点A和点B的位置如图,见解析;(1)点A关于x轴的对称点C的坐标为(3,-2);(2)BC=.【分析】先根据已知描出点A和点B的位置;(1)根据平面内两个关于x轴对称的点,横坐标不变,纵坐标互为相反数即可确定C的坐标;(2)直接用两点距离公式即可求解.【详解】解:点A和点B的位置如图:(1)点A关于x轴的对称点C的坐标为(3,-2);(2)BC=.【点睛】本题考查的主要是平面直角坐标系内点的计算,掌握点的对称规律以及两点距离公式是解题的关键.25、(1)见解析;(1)PE+PF的最小值=6,BP=1;(3)1【分析】(1)解直角三角形求出BE,AE即可判断.(1)如图1中,延长DF到H,使得DH=DF,连接EF,连接EH交BC于点P,此时PE+PF的值最小.证明∠HEF=90°,解直角三角形求出EH即可解决问题.(3)证明△PBE是等边三角形,求出PE,EF即可解决问题.【详解】(1)证明:如图1中,∵△ABC是等边三角形,∴AB=BC=AC=8,∠B=∠BAC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论