北京市门头沟区名校2025届数学八年级第一学期期末质量检测模拟试题含解析_第1页
北京市门头沟区名校2025届数学八年级第一学期期末质量检测模拟试题含解析_第2页
北京市门头沟区名校2025届数学八年级第一学期期末质量检测模拟试题含解析_第3页
北京市门头沟区名校2025届数学八年级第一学期期末质量检测模拟试题含解析_第4页
北京市门头沟区名校2025届数学八年级第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市门头沟区名校2025届数学八年级第一学期期末质量检测模拟试题模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.等腰三角形一腰上的高与另一腰的夹角是60°,则顶角的度数是()A.30° B.30°或150° C.60°或150° D.60°或120°2.在式子,,,中,分式的个数是()A.1 B.2 C.3 D.43.在平面直角坐标系中,点(2,3)关于y轴对称的点的坐标是()A.(﹣2,﹣3) B.(2,﹣3) C.(﹣2,3) D.(2,3)4.下列命题中,是假命题的是()A.对顶角相等B.同旁内角互补C.两点确定一条直线D.角平分线上的点到这个角的两边的距离相等5.将平面直角坐标系内某个图形上各点的横坐标都乘以-1,纵坐标不变,所得图形与原图形的关系是A.关于x轴对称 B.关于y轴对称 C.关于原点对称 D.两图形重合6.等腰三角形一腰上的高与另一腰的夹角为,则这个等腰三角形的顶角度数为()A. B. C. D.或7.已知等腰三角形的一边长为5,另一边长为10,则这个等腰三角形的周长为()A.25 B.25或20 C.20 D.158.如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是()A.1 B. C.ab D.a29.在平面直角坐标系中,线段的端点分别为,将线段平移到,且点的坐标为(8,4),则线段的中点的坐标为()A.(7,6) B.(6,7) C.(6,8) D.(8,6)10.如图,,,过作的垂线,交的延长线于,若,则的度数为()A.45° B.30° C.22.5° D.15°11.若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.912.冬天到了,政府决定免费为贫困山区安装暖气,计划甲安装队为A山区安装660片,乙安装队为B山区安装600片,两队同时开工且恰好同时完工,甲队比乙队每天多安装20片.设乙队每天安装x片,根据题意,下面所列方程中正确的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在△ABC中,∠ACB的平分线交AB于点D,DE⊥AC于点E,F为BC上一点,若DF=AD,△ACD与△CDF的面积分别为10和4,则△AED的面积为______14.命题“若a2>b2,则a>b”的逆命题是_____,该逆命题是(填“真”或“假”)_____命题.15.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为__cm.16.如果方程组的解满足,则的值为___________.17.下列组数:,﹣,﹣,,3.131131113…(相邻两个3之间依次多一个1),无理数有________个.18.我们知道多项式的乘法可以利用图形的面积进行解释,如就可以用图(1)的面积表示,请你仿照图(1)写出图(2)表示的一个等式______.三、解答题(共78分)19.(8分)已知:如图,AD垂直平分BC,D为垂足,DM⊥AB,DN⊥AC,M、N分别为垂足.求证:DM=DN.20.(8分)如图,已知在坐标平面内,点的坐标是,点在点的正北方向个单位处,把点向上平移个单位再向左平移个单位得到点.在下图中画出平面直角坐标系和,写出点、点的坐标;在图中作出关于轴的轴对称图形;求出的面积21.(8分)如图(单位:m),某市有一块长为(3a+b)m、宽为(2a+b)m的长方形地,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=6,b=1时,绿化的面积.22.(10分)一次函数y=kx+b的图象经过点A(0,9),并与直线y=x相交于点B,与x轴相交于点C,其中点B的横坐标为1.(1)求B点的坐标和k,b的值;(2)点Q为直线y=kx+b上一动点,当点Q运动到何位置时△OBQ的面积等于?请求出点Q的坐标;(1)在y轴上是否存在点P使△PAB是等腰三角形?若存在,请直接写出点P坐标;若不存在,请说明理由.23.(10分)如图,在平面直角坐标系中,直线l₁:yx与直线l₂:y=kx+b相交于点A(a,3),直线交l₂交y轴于点B(0,﹣5).(1)求直线l₂的解析式;(2)将△OAB沿直线l₂翻折得到△CAB(其中点O的对应点为点C),求证:AC∥OB;(3)在直线BC下方以BC为边作等腰直角三角形BCP,直接写出点P的坐标.24.(10分)先化简代数式,再从四个数中选择一个你喜欢的数代入求值.25.(12分)苏科版《数学》八年级上册第35页第2题,介绍了应用构造全等三角形的方法测量了池塘两端A、B两点的距离.星期天,爱动脑筋的小刚同学用下面的方法也能够测量出家门前池塘两端A、B两点的距离.他是这样做的:选定一个点P,连接PA、PB,在PM上取一点C,恰好有PA=14m,PB=13m,PC=5m,BC=12m,他立即确定池塘两端A、B两点的距离为15m.小刚同学测量的结果正确吗?为什么?26.已知:如图,相交于点.若,求的长.

参考答案一、选择题(每题4分,共48分)1、B【分析】本题要分情况讨论.当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况.【详解】解:①当为锐角三角形时,如图1,

∵∠ABD=60°,BD⊥AC,

∴∠A=90°-60°=30°,

∴三角形的顶角为30°;

②当为钝角三角形时,如图2,

∵∠ABD=60°,BD⊥AC,

∴∠BAD=90°-60°=30°,

∵∠BAD+∠BAC=180°,

∴∠BAC=150°

∴三角形的顶角为150°,

故选:B.【点睛】本题主要考查了等腰三角形的性质及三角形内角和定理,做题时,考虑问题要全面,必要的时候可以做出模型帮助解答,进行分类讨论是正确解答本题的关键.2、B【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】,分母中均不含有字母,因此它们是整式,而不是分式.其余两个式子的分母中含有字母,因此是分式.故选:B.【点睛】本题考查了分式的定义,特别注意π不是字母,是常数,所以不是分式,是整式.3、C【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数.【详解】解:点(2,3)关于y轴对称的点的坐标是(﹣2,3).故选C.【点睛】本题考查关于x轴、y轴对称的点的坐标,利用数形结合思想解题是关键.4、B【解析】试题分析:A.对顶角相等,所以A选项为真命题;B.两直线平行,同旁内角互补,所以B选项为假命题;C.两点确定一条直线,所以C选项为真命题;D.角平分线上的点到这个角的两边的距离相等,所以D选项为真命题.故选B.考点:命题与定理.5、B【解析】在坐标系中,点的坐标关于y轴对称则纵坐标不变,横坐标变为原坐标的相反数,题中纵坐标不变,横坐标都乘以-1,变为原来的数的相反数,所以关于y坐标轴对称,故B正确.6、D【分析】首先想到等腰三角形分为锐角、直角、钝角等腰三角形,当为等腰直角三角形时不可能出现题中所说情况所以舍去不计,我们可以通过画图来讨论剩余两种情况.【详解】解:①当为锐角三角形时可以画图,高与另一边腰成40°夹角,由三角形内角和为180°可得,三角形顶角为50°②当为钝角三角形时可以画图,此时垂足落到三角形外面,因为三角形内角和为180°,由图可以看出等腰三角形的顶角的补角为50°,则三角形的顶角为130°.综上,等腰三角形顶角度数为或故选:D.【点睛】本题主要考查了等腰三角形的性质及三角形内角和定理,做题时,考虑问题要全面,必要的时候可以做出模型帮助解答,进行分类讨论是正确解答本题的关键,难度适中.7、A【分析】题目给出等腰三角形有两条边长为5和10,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】分两种情况:

当腰为5时,5+5=10,所以不能构成三角形;

当腰为10时,5+10>10,所以能构成三角形,周长是:10+10+5=1.

故选:A.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.8、B【解析】根据分式的基本性质对选项逐一判断即可.【详解】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选B.【点睛】本题考查了分式的基本性质:分式的分子与分母同时乘以或除以同一个不为零的数,分式的值不变.9、A【分析】根据点A、A1的坐标确定出平移规律,求出B1坐标,再根据中点的性质求解.【详解】∵,(8,4),∴平移规律为向右平移6个单位,向上平移4个单位,∵,∴点B1的坐标为(6,8),∴线段的中点的坐标为,即(7,6),故选A.【点睛】本题考查了坐标与图形变化−平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.10、C【分析】连接AD,延长AC、DE交于M,求出∠CAB=∠CDM,根据全等三角形的判定得出△ACB≌△DCM,求出AB=DM,求出AD=AM,根据等腰三角形的性质得出即可.【详解】解:连接AD,延长AC、DE交于M,

∵∠ACB=90°,AC=CD,

∴∠DAC=∠ADC=45°,

∵∠ACB=90°,DE⊥AB,

∴∠DEB=90°=∠ACB=∠DCM,

∵∠ABC=∠DBE,

∴∠CAB=∠CDM,

在△ACB和△DCM中∴△ACB≌△DCM(ASA),

∴AB=DM,

∵AB=2DE,

∴DM=2DE,

∴DE=EM,

∵DE⊥AB,

∴AD=AM,故选:C.【点睛】本题考查了全等三角形的性质和判定,等腰直角三角形,等腰三角形的性质和判定等知识点,能根据全等求出AB=DM是解此题的关键.11、C【解析】多边形内角和定理.【分析】设这个多边形的边数为n,由n边形的内角和等于110°(n﹣2),即可得方程110(n﹣2)=1010,解此方程即可求得答案:n=1.故选C.12、D【分析】根据题意,分别求出两队完工的天数列出方程即可.【详解】设乙队每天安装x片,则甲队每天安装x+20片,故选:D.【点睛】此题主要考查分式方程的实际应用,解题关键是理解题意,找出等量关系.二、填空题(每题4分,共24分)13、1【分析】如图(见解析),过点D作,根据角平分线的性质可得,再利用三角形全等的判定定理得出,从而有,最后根据三角形面积的和差即可得出答案.【详解】如图,过点D作平分,又则解得故答案为:1.【点睛】本题考查了角平分线的性质、直角三角形全等的判定定理等知识点,通过作辅助线,构造两个全等的三角形是解题关键.14、如a>b,则a2>b2假【解析】先写出命题的逆命题,然后在判断逆命题的真假.【详解】如a2>b2,则a>b”的逆命题是:如a>b,则a2>b2,假设a=1,b=-2,此时a>b,但a2<b2,即此命题为假命题.故答案为:如a>b,则a2>b2,假.【点睛】此题考查了命题与定理的知识,写出一个命题的逆命题的关键是分清它的题设和结论,然后将题设和结论交换.在写逆命题时要用词准确,语句通顺.15、1【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=1cm.故填1.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.16、【分析】先利用方程组求出a的值,再代入求解即可得.【详解】②①得:,即由题意得:解得将代入得:故答案为:.【点睛】本题考查了二元一次方程组的解定义、代数式的化简求值等知识点,掌握理解二元一次方程组的解定义是解题关键.17、1.【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】无理数有:-π,,1.111111111…(相邻两个1之间依次多一个1),共有1个.故答案为:1.【点睛】本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.18、【分析】分别用长方形的面积公式和六个小长方形的面积之和表示图(2)的面积,从而建立等式即可.【详解】图(2)的面积可以表示为:图(2)的面积也可以表示为:所以有故答案为:.【点睛】本题主要考查多项式乘法,能够用两种方式表示出图中的面积是解题的关键.三、解答题(共78分)19、见解析.【分析】根据垂直平分线的性质得到AC=AB,再利用等腰三角形的性质得到AD是角平分线,最后利用角平分线的性质即可得到结论.【详解】证明:∵AD垂直平分BC,∴AC=AB,即是等腰三角形,∴AD平分∠BAC,∵DM⊥AB,DN⊥AC,∴DM=DN.【点睛】本题考查了垂直平分线的性质,等腰三角形的判定与性质,角平分线的性质,熟练掌握各性质判定定理是解题的关键.20、(1)图见解析,点B的坐标为(-1,6),点C的坐标为(-4,3);(2)见解析;(3).【分析】(1)根据描述可画出B,C表示的点,顺次连接可得到△ABC,再根据点A的坐标可找到原点坐标,并可以画出坐标系,然后写出B,C的坐标即可;(2)根据关于y轴对称的点的坐标横坐标互为相反数,纵坐标相等找出A,B,C的对应点,然后再顺次连接即可得出结果;(3)过点C作CD⊥AB于点D,则根据三角形的面积公式可得出△ABC的面积.【详解】解:(1)平面直角坐标系和如图所示,点B的坐标为(-1,6),点C的坐标为(-4,3);(2)△A′B′C′如图所示;(3)过点C作CD⊥AB于点D,根据题意可知,AB∥y轴,∴AB=5,CD=3,∴△ABC的面积=×AB×CD=×5×3=.【点睛】本题考查了利用平移变换作图以及轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.21、(5a2+3ab)m2,198m2【分析】首先列出阴影部分的面积的表达式,再化简求值.【详解】解:绿化的面积为(3a+b)(2a+b)-(a+b)2=(5a2+3ab)m2当a=6,b=1时,绿化的面积为5a2+3ab=5×62+3×6×1=198(m2)【点睛】本题运用列代数式求值的知识点,关键是化简时要算准确.22、(1)点B(1,5),k=﹣,b=9;(2)点Q(0,9)或(6,1);(1)存在,点P的坐标为:(0,4)或(0,14)或(0,﹣1)或(0,)【分析】(1)相交于点,则点,将点、的坐标代入一次函数表达式,即可求解;(2)的面积,即可求解;(1)分、、三种情况,分别求解即可.【详解】解:(1)相交于点,则点,将点、的坐标代入一次函数表达式并解得:,;(2)设点,则的面积,解得:或6,故点Q(0,9)或(6,1);(1)设点,而点、的坐标分别为:、,则,,,当时,,解得:或4;当时,同理可得:(舍去)或;当时,同理可得:;综上点的坐标为:(0,4)或(0,14)或(0,﹣1)或(0,).【点睛】本题考查的是一次函数综合运用,涉及到一次函数的性质、勾股定理的运用、面积的计算等,其中(1),要注意分类求解,避免遗漏.23、(2)直线l₂的解析式为y=2x﹣5;(2)证明见解析;(3)P2(0,﹣9),P2(7,﹣6),P3(,).【分析】(2)解方程得到A(2,3),待定系数法即可得到结论;

(2)根据勾股定理得到OA=5,根据等腰三角形的性质得到∠OAB=∠OBA,根据折叠的性质得到∠OAB=∠CAB,于是得到结论;

(3)如图,过C作CM⊥OB于M,求得CM=OD=2,得到C(2,-2),过P2作P2N⊥y轴于N,根据全等三角形的判定和性质定理即可得到结论.【详解】(2)∵直线l₁:yx与直线l₂:y=kx+b相交于点A(a,3),∴A(2,3).∵直线交l₂交y轴于点B(0,﹣5),∴y=kx﹣5,把A(2,3)代入得:3=2k﹣5,∴k=2,∴直线l₂的解析式为y=2x﹣5;(2)∵OA5,∴OA=OB,∴∠OAB=∠OBA.∵将△OAB沿直线l₂翻折得到△CAB,∴∠OAB=∠CAB,∴∠OBA=∠CAB,∴AC∥OB;(3)如图,过C作CM⊥OB于M,则CM=OD=2.∵BC=OB=5,∴BM=3,∴OB=2,∴C(2,﹣

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论