版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市第四十四中学2025届高二数学第一学期期末质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数在区间上的最小值是()A. B.C. D.2.命题“,”的否定是()A., B.,C., D.,3.设是椭圆的上顶点,若上的任意一点都满足,则的离心率的取值范围是()A. B.C. D.4.一个袋中装有大小和质地相同的5个球,其中有2个红色球,3个绿色球,从袋中不放回地依次随机摸出2个球,下列结论正确的是()A.第一次摸到绿球的概率是 B.第二次摸到绿球的概率是C.两次都摸到绿球的概率是 D.两次都摸到红球的概率是5.已知函数,那么“”是“在上为增函数”的A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件6.已知,若对于且都有成立,则实数的取值范围是()A. B.C. D.7.在平面区域内随机投入一点P,则点P的坐标满足不等式的概率是()A. B.C. D.8.已知等比数列的公比为q,且,则“”是“是递增数列”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.从1,2,3,4,5中任取2个不同的数,两数和为偶数的概率为()A. B.C. D.10.已知,,,若,,共面,则λ等于()A. B.3C. D.911.在下列四条抛物线中,焦点到准线的距离为1的是()A. B.C. D.12.已知直线l1:ax+2y=0与直线l2:2x+(2a+2)y+1=0垂直,则实数a的值为()A.﹣2 B.C.1 D.1或﹣2二、填空题:本题共4小题,每小题5分,共20分。13.棱长为的正方体的顶点到截面的距离等于__________.14.点为双曲线上一点,为焦点,如果则双曲线的离心率为___________.15.抛物线焦点坐标是,则______16.已知正方形的边长为分别是边的中点,沿将四边形折起,使二面角的大小为,则两点间的距离为__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线C:,过点且斜率为k的直线与抛物线C相交于P,Q两点.(1)设点B在x轴上,分别记直线PB,QB的斜率为.若,求点B的坐标;(2)过抛物线C的焦点F作直线PQ的平行线与抛物线C相交于M,N两点,求的值.18.(12分)在①成等差数列;②成等比数列;③这三个条件中任选一个,补充在下面的问题中,并对其求解.问题:已知为数列的前项和,,且___________.(1)求数列的通项公式;(2)记,求数列的前项和.注:如果选择多个条件分别解答,按第一个解答计分.19.(12分)求证:(1)是上的偶函数;(2)是上的奇函数.20.(12分)已知抛物线的焦点为F,为抛物线C上的点,且.(1)求抛物线C的方程;(2)若直线与抛物线C相交于A,B两点,求弦长.21.(12分)已知等比数列中,,数列满足,(1)求数列的通项公式;(2)求证:数列为等差数列,并求前项和的最大值22.(10分)已知数列是等差数列,其前项和为,且,.(1)求;(2)记数列的前项和为,求当取得最小值时的的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】求出导函数,确定函数的单调性,得极值,并求出端点处函数值比较后可得最小值【详解】解:因为,于是函数在上单调递增,在上单调递减,,,得函数在区间上的最小值是故选:B2、D【解析】根据含一个量词的命题的否定方法:修改量词,否定结论,直接得到结果.【详解】命题“,”的否定是“,”.故选:D3、C【解析】设,由,根据两点间的距离公式表示出,分类讨论求出的最大值,再构建齐次不等式,解出即可【详解】设,由,因为,,所以,因为,当,即时,,即,符合题意,由可得,即;当,即时,,即,化简得,,显然该不等式不成立故选:C【点睛】本题解题关键是如何求出的最大值,利用二次函数求指定区间上的最值,要根据定义域讨论函数的单调性从而确定最值4、C【解析】对选项A,直接求出第一次摸球且摸到绿球的概率;对选项B,第二次摸到绿球分两种情况,第一次摸到绿球且第二也摸到绿球和第一次摸到红球且第二次摸到绿球;对选项C,直接求出第一次摸到绿球且第二也摸到绿球的概率;对选项D,直接求出第一次摸到红球且第二也摸到红球的概率【详解】对选项A,第一次摸到绿球的概率为:,故错误;对选项B,第二次摸到绿球的概率为:,故错误;对选项C,两次都摸到绿球的概率为:,故正确;对选项D,两次都摸到红球的概率为:,故错误故选:C5、A【解析】对函数进行求导得,进而得时,,在上为增函数,然后判断充分性和必要性即可.【详解】解:因为的定义域是,所以,当时,,在上为增函数.所以在上为增函数,是充分条件;反之,在上为增函数或,不是必要条件.故选:A.【点睛】本题主要考查充分条件和必要条件的判断,属于中档题.6、D【解析】根据题意转化为对于且时,都有恒成立,构造函数,转化为时,恒成立,求得的导数,转化为在上恒成立,即可求解.【详解】由题意,对于且都有成立,不妨设,可得恒成立,即对于且时,都有恒成立,构造函数,可转化为,函数为单调递增函数,所以当时,恒成立,又由,所以在上恒成立,即在上恒成立,又由,所以,即实数取值范围为.故选:D7、A【解析】根据题意作出图形,进而根据几何概型求概率的方法求得答案.【详解】根据题意作出示意图,如图所示:于,所求概率.故选:A.8、B【解析】利用充分条件和必要条件的定义结合等比数列的性质分析判断【详解】当时,则,则数列为递减数列,当是递增数列时,,因为,所以,则可得,所以“”是“是递增数列”的必要不充分条件,故选:B9、B【解析】利用列举法,结合古典概型概率计算公式,计算出所求概率.【详解】从中任取个不同的数的方法有,共种,其中和为偶数的有共种,所以所求的概率为.故选:B【点睛】本小题主要考查古典概型概率计算,属于基础题.10、C【解析】由,,共面,设,列方程组能求出λ的值【详解】∵,,共面,∴设(实数m、n),即,∴,解得故选:C11、D【解析】由题意可知,然后分析判断即可【详解】由题意知,即可满足题意,故A,B,C错误,D正确.故选:D12、B【解析】由题意,利用两直线垂直的性质,两直线垂直时,一次项对应系数之积的和等于0,计算求得a的值【详解】∵直线l1:ax+2y=0与直线l2:2x+(2a+2)y+1=0垂直,∴a×2+2×(2a+2)=0,求得a=﹣,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据勾股定理可以计算出,这样得到是直角三角形,利用等体积法求出点到的距离.【详解】解:如图所示,在三棱锥中,是三棱锥的高,,在中,,,,所以是直角三角形,,设点到的距离为,.故A到平面的距离为故答案为:【点睛】本题考查了点到线的距离,利用等体积法求出点到面的距离.是解题的关键.14、【解析】利用双曲线的定义、离心率的计算公式、两角和差的正弦公式即可得出.【详解】由可得,根据双曲线的定义可得:,.故答案为:15、2【解析】根据抛物线的几何性质直接求解可得.【详解】的焦点坐标为,即.故答案为:216、.【解析】取BE的中点G,然后证明是二面角的平面角,进而证明,最后通过勾股定理求得答案.【详解】如图,取BE的中点G,连接AG,CG,由题意,则是二面角的平面角,则,又,则是正三角形,于是.根据可得:平面ABE,而平面ABE,所以,而,则平面BCFE,又平面BCFE,于是,,又,所以.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)直线的方程为,其中,联立直线与抛物线方程,由韦达定理结合已知条件可求得点的坐标;(2)直线的方程为,利用倾斜角定义知,,联立直线与抛物线方程,利用弦长公式求得,进而得解.小问1详解】由题意,直线的方程为,其中.设,联立,消去得..,,即.,即.,,∴点的坐标为.【小问2详解】由题意,直线的方程为,其中,为倾斜角,则,设.联立,消去得...18、(1)(2)【解析】(1)由可知数列是公比为的等比数列,若选①:结合等差数列等差中项的性质计算求解;若选②:利用等比数列等比中项的性质计算求解,若选③:利用直接计算;(2)根据对数的运算,可知数列为等差数列,直接求和即可.小问1详解】由,当时,,即,即,所以数列是公比为的等比数列,若选①:由,即,,所以数列的通项公式为;若选②:由,所以,所以数列的通项公式为;若选③:由,即,所以数列的通项公式为;【小问2详解】由(1)得,所以数列等差数列,所以.19、(1)证明见详解(2)证明见详解【解析】利用函数奇偶性的定义证明即可【小问1详解】由题意函数定义域为且故是上的偶函数【小问2详解】由题意函数定义域为且故是上奇函数20、(1);(2)【解析】(1)根据抛物线定义可得,从而得到抛物线C的方程;(2)设,联立抛物线方程,消去,可得的方程,运用韦达定理和弦长公式,计算可得所求值【详解】(1),所以,即抛物线C的方程.(2)设,由得所以,所以.【点睛】方法点睛:计算抛物线弦长方法,(1)若直线过抛物线的焦点,则弦长|AB|=x1+x2+p=(α为弦AB的倾斜角)(2)若直线不过抛物线的焦点,则用|AB|=·|x1-x2|求解21、(1);(2)证明见解析,10.【解析】(1)设出等比数列的公比q,利用给定条件列出方程求出q值即得;(2)将给定等式变形成,再推理计算即可作答.【详解】(1)设等比数列的公比为q,依题意,,而,解得,所以数列的通项公式为;(2)显然,,由得:,所以数列是以为首项,公差
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年江苏安全技术职业学院单招职业适应性测试模拟测试卷附答案
- 2026年大冶电工理论考试试题及答案(易错题)
- 2026年威海职业学院单招职业适应性考试题库及答案1套
- 2026年心理健康素养考试题库及参考答案一套
- 2026年电工基础知识测试题完整参考答案
- 2026四川阿坝州阿坝县国有资产管理中心招聘阿坝文商旅发展有限公司总经理1人笔试模拟试题及答案解析
- 2026国新新格局(北京)私募证券基金管理有限公司相关岗位招聘1人笔试备考题库及答案解析
- 2026重庆奉节县竹园镇人民政府全日制公益性岗位招聘5人笔试备考题库及答案解析
- 2025广西百色政协西林县委员会办公室招聘编外聘用人员4人(公共基础知识)综合能力测试题附答案
- 2025年河南豫能控股股份有限公司及所管企业第二批社会招聘18模拟试卷附答案
- 认知障碍老人的护理课件
- 麻醉科业务学习课件
- 绿色低碳微晶材料制造暨煤矸石工业固废循环利用示范产业园环境影响报告表
- 2025吉林检验专升本试题及答案
- 军人婚恋观教育
- 硫化氢(CAS号:7783-06-4)理化性质与危险特性一览表
- QHBTL01-2022 热力入口装置
- 广告标识牌采购投标方案
- 计算机应用专业发展规划
- 结算审核实施方案
- 企业管理的基础工作包括哪些内容
评论
0/150
提交评论