




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共6页2025届四川省成都市锦江区七中学育才学校九上数学开学联考模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)若点P的坐标为(3,4),则点P关于x轴对称点的点P′的坐标为()A.(4,-3) B.(3,-4) C.(-4,3) D.(-3,4)2、(4分)下列各组线段中,能构成直角三角形的是()A.2,3,4B.3,4,6C.5,12,13D.4,6,73、(4分)在函数y=1-5x中,自变量x的取值范围是A.x<15 B.x≤154、(4分)如图,在中,分别是边的中点.已知,则四边形的周长为()A. B. C. D.5、(4分)一次函数的图像不经过的象限是:()A.第一象限 B.第二象限 C.第三象限 D.第四象限6、(4分)下列各组数据中的三个数作为三角形的边长,其中不能构成直角三角形的()A.5,12,13 B.3,4,5 C.6,8,10 D.2,3,47、(4分)在□ABCD中,∠B+∠D=260°,那么∠A的度数是()A.50° B.80° C.100° D.130°8、(4分)将化成的形式,则的值是()A.-5 B.-8 C.-11 D.5二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在矩形ABCD中,AC为对角线,点E为BC上一点,连接AE,若∠CAD=2∠BAE,CD=CE=9,则AE的长为_____________.10、(4分)如图,在正方向中,是对角线上一点,的延长线与交于点,若,则______;11、(4分)若点A(x1,y1)和点B(x1+1,y2)都在一次函数y=2018x-2019的图象上,则y1_______y2(选择“>”、“<”或“=”填空).12、(4分)如图,在正方形中,是对角线上的点,,,分别为垂足,连结.设分别是的中点,,则的长为________。13、(4分)若,则关于函数的结论:①y随x的增大而增大;②y随x的增大而减小;③y恒为正值;④y恒为负值.正确的是________.(直接写出正确结论的序号)三、解答题(本大题共5个小题,共48分)14、(12分)如图,直线与坐标轴交于点、两点,直线与直线相交于点,交轴于点,且的面积为.(1)求的值和点的坐标;(2)求直线的解析式;(3)若点是线段上一动点,过点作轴交直线于点,轴,轴,垂足分别为点、,是否存在点,使得四边形为正方形,若存在,请求出点坐标,若不存在,请说明理由.15、(8分)(感知)如图①在等边△ABC和等边△ADE中,连接BD,CE,易证:△ABD≌△ACE;(探究)如图②△ABC与△ADE中,∠BAC=∠DAE,∠ABC=∠ADE,求证:△ABD∽△ACE;(应用)如图③,点A的坐标为(0,6),AB=BO,∠ABO=120°,点C在x轴上运动,在坐标平面内作点D,使AD=CD,∠ADC=120°,连结OD,则OD的最小值为.16、(8分)已知四边形ABCD,请你作出一个新图形,使新图形与四边形ABCD的相似比为2:1,用圆规、直尺作图,不写作法,但要保留作图痕迹.17、(10分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度(米)与登山时间(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟米,乙在地时距地面的高度为米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度(米)与登山时间(分)之间的函数关系式.(3)登山多长时间时,甲、乙两人距地面的高度差为50米?18、(10分)“书香校园”活动中,某校同时购买了甲、乙两种图书,已知两种图书的购书款均为360元,甲种图书的单价比乙种图书低50%,甲种图书比乙种图书多4本,甲、乙两种图书的单价分别为多少元?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,小亮从点O出发,前进5m后向右转30°,再前进5m后又向右转30°,这样走n次后恰好回到点O处,小亮走出的这个n边形的每个内角是__________°,周长是___________________m.20、(4分)如图是一次函数y=kx+b的图象,当y<0时,x的取值范围是_________________.21、(4分)在中,平分交点,平分交于点,且,则的长为__________.22、(4分)方程的解是__________.23、(4分)已知,,则=______。二、解答题(本大题共3个小题,共30分)24、(8分)解不等式组,并将它的解集在数轴表示出来.25、(10分)如图,中,是边上一点,,,,点,分别是,边上的动点,且始终保持.(1)求的长;(2)若四边形为平行四边形时,求的周长;(3)将沿它的一条边翻折,当翻折前后两个三角形组成的四边形为菱形时,求线段的长.26、(12分)在中,,是边上的中线,是的中点,过点作交的延长线于点,连接.(1)如图1,求证:(2)如图2,若,其它条件不变,试判断四边形的形状,并证明你的结论.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】
根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”即可求解.【详解】∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,∴P′的坐标为(3,−4).故选:B.本题考查关于x轴对称的点的坐标的特点,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数,比较简单.2、C【解析】试题分析:选项A,22+32=13≠42;选项B,32+42=25≠62;选项C,52+122=169=132;选项D,42+62=52≠1.由勾股定理的逆定理可得,只有选项C能够成直角三角形,故答案选C.考点:勾股定理的逆定理.3、B【解析】
根据a(a≥0)这一性质即可确定【详解】解:∵1-5x≥0,∴x≤故选:B本题考查了函数自变量的取值范围,由函数解析式确定自变量满足的条件是解题的关键.4、C【解析】
根据三角形中位线定理、线段中点的定义解答.【详解】解:∵D,E分别是边BC,CA的中点,∴DE=AB=2,AF=AB=2,∵D,F分别是边BC,AB的中点,∴DF=AC=3,AE=AC=3,∴四边形AFDE的周长=AF+DF+DE+AE=2+3+2+3=10,故选:C.本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.5、C【解析】试题分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限;当k>0,b<0时,图像过一三四象限;当k<0,b>0时,图像过一二四象限;当k<0,b<0,图像过二三四象限.这个一次函数的k=<0与b=1>0,因此不经过第三象限.答案为C考点:一次函数的图像6、D【解析】
欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、52+122=132,能构成直角三角形,故不符合题意;B、32+42=52,能构成直角三角形,故不符合题意;C、62+82=102,能构成直角三角形,故不符合题意;D、22+32≠42,不能构成直角三角形,故符合题意.故选:D.本题考查勾股定理的逆定理的应用,正确应用勾股定理的逆定理是解题的关键.7、A【解析】
直接利用平行四边形的对角相等,邻角互补即可得出答案【详解】如图所示∵四边形ABCD是平行四边形∴∠B=∠D,∠A+∠B=180°∵∠B+∠D=260°∴∠B=∠D=130°,∴∠A的度数是:50°故选A此题考查平行四边形的性质,难度不大8、A【解析】
首先把x2-6x+1化为(x-3)2-8,然后根据把二次函数的表达式y=x2-6x+1化为y=a(x-h)2+k的形式,分别求出h、k的值各是多少,即可求出h+k的值是多少.【详解】解:∵y=x2-6x+1=(x-3)2-8,
∴(x-3)2-8=a(x-h)2+k,
∴a=1,h=3,k=-8,
∴h+k=3+(-8)=-1.
故选:A.此题主要考查了二次函数的三种形式,要熟练掌握三种形式之间相互转化的方法.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】
如图,作AM平分∠DAC,交CD于点M,过点M作MN⊥AC于点N,证明△ABE∽△ADM,根据相似三角形的性质可得AB:AD=BE:DM,证明△ADM≌△ANM,根据全等三角形的性质可得AN=AD,MN=DM,设BE=m,DM=n,则AN=AD=BC=9+m,MN=n,CM=9-n,由此可得,即9n=m(9+m),根据勾股定理可得AC=,从而可得CN=-(9+m),在Rt△CMN中,根据勾股定理则可得(9-n)2=n2+[-(9+m)]2,继而由9n=m(9+m),可得-2m(9+m)=2(9+m)2-2(9+m),化简得=9+2m,两边同时平方后整理得m2+6m-27=0,求得m=3或m=-9(舍去),再根据勾股定理即可求得答案.【详解】如图,作AM平分∠DAC,交CD于点M,过点M作MN⊥AC于点N,则∠CAD=2∠DAM=2∠NAM,∠ANM=∠MNC=90°,∵∠CAD=2∠BAE,∴∠BAE=∠DAM,∵四边形ABCD是矩形,∴AB=CD=9,∠B=∠D=90°,AD=BC,∴△ABE∽△ADM,∴AB:AD=BE:DM,又∵AM=AM,∴△ADM≌△ANM,∴AN=AD,MN=DM,设BE=m,DM=n,则AN=AD=BC=CE+BE=9+m,MN=n,CM=CD-DM=9-n,∵AB:AD=BE:DM,∴,即9n=m(9+m),∵∠B=90°,∴AC=,∴CN=AC-AN=-(9+m),在Rt△CMN中,CM2=CN2+MN2,即(9-n)2=n2+[-(9+m)]2,∴81-18n+n2=n2+92+(9+m)2-2(9+m)+(9+m)2,又∵9n=m(9+m),∴81-2m(9+m)+n2=n2+92+(9+m)2-2(9+m)+(9+m)2,即-2m(9+m)=2(9+m)2-2(9+m),∴=9+2m,∴92+(9+m)2=(9+2m)2,即m2+6m-27=0,解得m=3或m=-9(舍去),∴AE=,故答案为:.本题考查了矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理的应用等,综合性较强,难度较大,正确添加辅助线,熟练掌握和灵活运用相关知识,准确计算是解题的关键.10、4【解析】
由正方形的对称性和矩形的性质可得结果.【详解】连接DE交FG于点O,由正方形的对称性及矩形的性质可得:∠ABE=∠ADF=∠OEF=∠OFE=15°,∴∠EOH=30°,∴BE=DE=2OE=4EH,∴=4.故答案为4.本题考查了正方形的性质与矩形的性质,解答本题的关键是利用正方形的对称性求得∠ABE=∠ADF=∠OEF=∠OFE=15,进而利用RT△中30°所对的直角边等于斜边的一半解决问题.11、<【解析】
先根据直线y=1018x-1019判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.【详解】∵直线y=1018x-1019,k=1018>0,∴y随x的增大而增大,又∵x1<x1+1,∴y1<y1.故答案为:<.本题考查的是一次函数的增减性,即一次函数y=kx+b(k≠0)中,当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.12、2.1【解析】
连接AG,CG,根据矩形的判定定理得到四边形CFGE是矩形,求得CG=EF=1,根据全等三角形的性质得到AG=CG=1,由三角形中位线的性质即可得到结论.【详解】连接AG,CG,∵在正方形ABCD中,∠BCD=90°,∵GE⊥CD,GF⊥BC,∴四边形CFGE是矩形,∴CG=EF=1,∵AB=BC,∠ABD=∠CBD=41°,∵BG=BG,∴△ABG≌△CBG(SAS),∴AG=CG=1,∵M,N分别是AB,BG的中点,∴MN=AG=2.1,故答案为:2.1.本题考查正方形的性质,全等三角形的判定和性质,三角形的中位线定理,正确的作出辅助线是解题的关键.13、①③【解析】
根据题意和正比例函数的性质可以判各个小题中的结论是否正确,本题得以解决.【详解】解:,函数,y随x的增大而增大,故①正确,②错误;当时,,故③正确,④错误.故答案为:①③.本题考查正比例函数的性质,解答本题的关键是明确题意,利用正比例函数的性质解答.三、解答题(本大题共5个小题,共48分)14、(1),点为;(2);(3)存在,点为,理由见解析【解析】
(1)利用一次函数图象上点的坐标特征可求出m的值及点A的坐标;(2)过点P作PH⊥x轴,垂足为H,则PH=,利用三角形的面积公式结合△PAC的面积为,可求出AC的长,进而可得出点C的坐标,再根据点P,C的坐标,利用待定系数法即可求出直线PC的解析式;(3)由题意,可知:四边形EMNQ为矩形,设点E的纵坐标为t,利用一次函数图象上点的坐标特征可得出点E的坐标为(t-3,t)、点Q的坐标为(,t),利用正方形的性质可得出关于t的一元一次方程,解之即可得出结论.【详解】解:(1)把点代入直线,即时,直线,当时,得:,点为(2)过点作轴,垂足为,由(1)得,∴解得:点为设直线为,把点、代入,得:解得:直线的解析式为(3)由已知可得,四边形为矩形,设点的纵坐标为,则得:点为轴点的纵坐标也为点在直线上,当时,又当时,矩形为正方形,所以故点为本题考查了一次函数图象上点的坐标特征、三角形的面积、解一元一次方程、待定系数法求一次函数解析式以及正方形的性质,解题的关键是:(1)利用一次函数图象上点的坐标特征,求出m的值及点A的坐标;(2)根据点的坐标,利用待定系数法求出一次函数解析式;(3)利用正方形的性质,找出关于t的一元一次方程.15、探究:见解析;应用:.【解析】
探究:由△DAE∽△BAC,推出,可得,由此即可解决问题;应用:当点D在AC的下方时,先判定△ABO∽△ADC,得出,再根据∠BAD=∠OAC,得出△ACO∽△ADB,进而得到∠ABD=∠AOC=90°,得到当OD⊥BE时,OD最小,最后过O作OF⊥BD于F,根据∠OBF=30°,求得OF=OB=,即OD最小值为;当点D在AC的上方时,作B关于y轴的对称点B',则同理可得OD最小值为.【详解】解:探究:如图②中,∵∠BAC=∠DAE,∠ABC=∠ADE,∴△DAE∽△BAC,∠DAB=∠EAC,∴,∴,∴△ABD∽△ACE;应用:①当点D在AC的下方时,如图③−1中,作直线BD,由∠DAC=∠DCA=∠BAO=∠BOA=30°,可得△ABO∽△ADC,∴,即,又∵∠BAD=∠OAC,∴△ACO∽△ADB,∴∠ABD=∠AOC=90°,∵当OD⊥BE时,OD最小,过O作OF⊥BD于F,则△BOF为直角三角形,∵A点的坐标是(0,6),AB=BO,∠ABO=120°,∴易得OB=2,∵∠ABO=120°,∠ABD=90°,∴∠OBF=30°,∴OF=OB=,即OD最小值为;当点D在AC的上方时,如图③−2中,作B关于y轴的对称点B',作直线DB',则同理可得:△ACO∽△ADB',∴∠AB'D=∠AOC=90°,∴当OD⊥B'E时,OD最小,过O作OF'⊥B'D于F',则△B'OF'为直角三角形,∵A点的坐标是(0,6),AB'=B'O,∠AB'O=120°,∴易得OB'=2,∵∠AB'O=120°,∠AB'D=90°,∴∠OB'F'=30°,∴OF'=OB'=,即OD最小值为.故答案为:.本题属于相似形综合题,考查了相似三角形的判定与性质、含30°角的直角三角形的性质的综合应用,解决问题的关键是作辅助线,利用垂线段最短进行判断分析.解题时注意:在直角三角形中,30°角所对的直角边等于斜边的一半.16、见解析.【解析】
根据新图形与四边形ABCD的相似比为2:1,连接BD,延长BA、BD与BC在延长线上截取BA=AE,BD=DF,BC=CG,即可得出所画图形.【详解】解:如图所示.连接BD,延长BA、BD与BC在延长线上截取BA=AE,BD=DF,BC=CG,连接EF,FG,四边形BEFG即所画图形.本题考查相似变换的性质,根据相似比得出BE、BF、BG与BA、BD、BC的关系是解决问题的关键.17、(1)10;1;(2);(3)4分钟、9分钟或3分钟.【解析】
(1)根据速度=高度÷时间即可算出甲登山上升的速度;根据高度=速度×时间即可算出乙在A地时距地面的高度b的值;(2)分0≤x≤2和x≥2两种情况,根据高度=初始高度+速度×时间即可得出y关于x的函数关系;(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者做差等于50即可得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度-甲登山全程中y关于x的函数关系式=50,即可得出关于x的一元一次方程,解之可求出x值.综上即可得出结论.【详解】(1)(10-100)÷20=10(米/分钟),b=3÷1×2=1.故答案为:10;1.(2)当0≤x≤2时,y=3x;当x≥2时,y=1+10×3(x-2)=1x-1.当y=1x-1=10时,x=2.∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为.(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0≤x≤20).当10x+100-(1x-1)=50时,解得:x=4;当1x-1-(10x+100)=50时,解得:x=9;当10-(10x+100)=50时,解得:x=3.答:登山4分钟、9分钟或3分钟时,甲、乙两人距地面的高度差为50米.本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系列式计算;(2)根据高度=初始高度+速度×时间找出y关于x的函数关系式;(3)将两函数关系式做差找出关于x的一元一次方程.18、甲种图书的单价为每本45元,乙种图书的单价为每本90元【解析】
设乙种图书的单价是每本x元,则甲种图书的单价是每本0.5x元,根据题意列出分式方程,解之经检验后即可得出结论.【详解】设乙种图书的单价是每本x元,则甲种图书的单价是每本0.5x元根据题意得:解得:x=90经检验:x=90是分式方程的解答:甲种图书的单价为每本45元,乙种图书的单价为每本90元.本题考查了分式方程的应用,解题的关键是找准等量关系,列出分式方程.一、填空题(本大题共5个小题,每小题4分,共20分)19、150,60【解析】分析:回到出发点O点时,所经过的路线正好构成一个外角是30°的正多边形,根据正多边形的性质即可解答.详解:由题意可知小亮的路径是一个正多边形,∵每个外角等于30°,∴每个内角等于150°.∵正多边形的外角和为360°,∴正多边形的边数为360°÷30°=12(边).∴小亮走的周长为5×12=60.点睛:本题主要考查了多边形的内角与外角,牢记多边形的内角与外角概念是解题关键.20、【解析】
根据函数图象与x轴的交点坐标,当y<0即图象在x轴下侧,求出即可.【详解】当y<0时,图象在x轴下方,∵与x交于(1,0),∴y<0时,自变量x的取值范围是x<1,故答案为:x<1.本题考查了一次函数与一元一次不等式,解题的关键是运用观察法求自变量取值范围通常是从交点观察两边得解.21、或【解析】
根据平行线的性质得到∠ADF=∠DFC,由DF平分∠ADC,得到∠ADF=∠CDF,等量代换得到∠DFC=∠FDC,根据等腰三角形的判定得到CF=CD,同理BE=AB,根据已知条件得到四边形ABCD是平行四边形,根据平行四边形的性质得到AB=CD,AD=BC,即可得到结论.【详解】解:①如图1,在▱ABCD中,∵BC=AD=8,BC∥AD,CD=AB,CD∥AB,∴∠DAE=∠AEB,∠ADF=∠DFC,∵AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,∴∠BAE=∠DAE,∠ADF=∠CDF,∴∠BAE=∠AEB,∠CFD=∠CDF,∴AB=BE,CF=CD,∵EF=2,∴BC=BE+CF−EF=2AB−EF=8,∴AB=1;②在▱ABCD中,∵BC=AD=8,BC∥AD,CD=AB,CD∥AB,∴∠DAE=∠AEB,∠ADF=∠DFC,∵AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,∴∠BAE=∠DAE,∠ADF=∠CDF,∴∠BAE=∠AEB,∠CFD=∠CDF,∴AB=BE,CF=CD,∵EF=2,∴BC=BE+CF=2AB+EF=8,∴AB=3;综上所述:AB的长为3或1.故答案为:3或1.本题考查了等腰三角形的判定和性质,平行线的性质,平行四边形的性质,解答本题的关键是判断出AB=BE,CF=CD.22、【解析】
先移项,然后开平方,再开立方即可得出答案.【详解】,,故答案为:.本题主要考查解方程,掌握开平方和开立方的法则是解题的关键.23、60【解析】
=2ab(a+b),将a+b=3,ab=10,整体带入即可.【详解】=2ab(a+b)=2×3×10=60.本题主要考查利用提公因式法分解因式,整体带入是解决本题的关键.二、解答题(本大题共3个小题,共30分)24、x≤1,将解集表示在数轴上见解析.【解析】
先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上画出来【详解】解不等式①,得:x<2,解不等式②,得:x≤1,将解集表示在数轴上如下:此题考查在数轴上表示不等式的解集和解一元一次不等式组,解题关键在于先求出不等式的解集25、(1);(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 美容仪器在皮肤治疗技术的研究与开发策略考核试卷
- 智能康复机器人的运动控制技术考核试卷
- 2025装修合同条款不全 延期完工仍需赔偿
- 2025企业与企业之间租赁合同
- 2025养殖业承包合同 定义
- 2025房地产合作开发合同模板
- 2025年土地使用权买卖合同样本
- 第01讲 丰富的图形世界(解析版)
- 二零二五单位临时用员工聘用合同书
- 专业施工配合费协议
- 手术部位标识国家标准(2023版)
- 《装配式波纹钢结构技术规程》
- 广东省深圳市2023-2024学年高一下学期7月期末考试 化学 含答案
- 《小学生新能源科普》课件
- 咨询服务质量保证体系及保证措施
- 《快递运营》课件-项目四 快件分拨处理
- 航天任务工程款支付承诺书
- 【MOOC】航空发动机结构分析与设计-南京航空航天大学 中国大学慕课MOOC答案
- 2025年陕西延长石油(集团)有限责任公司招聘笔试备考试题及答案解析
- (新版)六西格玛绿带认证考试复习题库(含答案)
- 2024年上海市高考物理试卷(含答案解析)
评论
0/150
提交评论