




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学年湖南省邵阳市隆回县2025届数学高一上期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知一组数据为20,30,40,50,50,50,70,80,其平均数、第60百分位数和众数的大小关系是()A.平均数=第60百分位数>众数 B.平均数<第60百分位数=众数C.第60百分位数=众数<平均数 D.平均数=第60百分位数=众数2.设函数若任意给定的,都存在唯一的非零实数满足,则正实数的取值范围为()A. B.C. D.3.命题“,”的否定为()A., B.,C, D.,4.函数的部分图象如图示,则将的图象向右平移个单位后,得到的图象解析式为()A. B.C. D.5.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸;③台体的体积公式).A.2寸 B.3寸C.4寸 D.5寸6.设,,则()A. B.C. D.7.已知函数f(x)=a+log2(x2+a)(a>0)的最小值为8,则实数a的取值属于以下哪个范围()A.(5,6) B.(7,8)C.(8,9) D.(9,10)8.将函数y=cosx+sinx(x∈R)的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是()A. B.C. D.9.已知圆锥的底面半径为,当圆锥的体积为时,该圆锥的母线与底面所成角的正弦值为()A. B.C. D.10.设,则下列不等式一定成立的是()A B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.经过点P(3,2),且在两坐标轴上的截距相等的直线方程为(写出一般式)___12.已知函数,方程有四个不相等的实数根(1)实数m的取值范围为_____________;(2)的取值范围为______________13.若函数在区间上为增函数,则实数的取值范围为______.14.命题的否定是__________15.在直三棱柱中,若,则异面直线与所成的角等于_________.16.已知扇形的弧长为6,圆心角弧度数为2,则其面积为______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线l经过点,其倾斜角为.(1)求直线l的方程;(2)求直线l与两坐标轴围成的三角形的面积.18.如图,甲、乙是边长为4a的两块正方形钢板,现要将甲裁剪焊接成一个正四棱柱,将乙裁剪焊接成一个正四棱锥,使它们的全面积都等于一个正方形的面积(不计焊接缝的面积)(1)将你的裁剪方法用虚线标示在图中,并作简要说明;(2)试比较你所制作的正四棱柱与正四棱锥体积的大小,并证明你的结论19.如图,正方形ABCD所在平面与半圆孤所在平面垂直,M是上异于C,D的点(1)证明:平面AMD⊥平面BMC;(2)若正方形ABCD边长为1,求四棱锥M﹣ABCD体积的最大值20.已知函数.(1)求函数的定义域;(2)若函数的最小值为,求的值.21.已知的图象上相邻两对称轴的距离为.(1)若,求的递增区间;(2)若时,若最大值与最小值之和为5,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】从数据为20,30,40,50,50,50,70,80中计算出平均数、第60百分位数和众数,进行比较即可.【详解】解:平均数为,,第5个数50即为第60百分位数.又众数为50,它们的大小关系是平均数第60百分位数众数.故选:B.2、A【解析】结合函数的图象及值域分析,当时,存在唯一的非零实数满足,然后利用一元二次不等式的性质即可得结论.【详解】解:因为,所以由函数的图象可知其值域为,又时,值域为;时,值域为,所以的值域为时有两个解,令,则,若存在唯一的非零实数满足,则当时,,与一一对应,要使也一一对应,则,,任意,即,因为,所以不等式等价于,即,因,所以,所以,又,所以正实数的取值范围为.故选:A.3、B【解析】根据特称命题的否定为全称命题可得.【详解】根据特称命题的否定为全称命题,可得命题“,”的否定为“,”故选:B.4、D【解析】由图像知A="1,",,得,则图像向右移个单位后得到的图像解析式为,故选D5、B【解析】根据题意可得平地降雨量,故选B.考点:1.实际应用问题;2.圆台的体积.6、A【解析】由对数函数的图象和性质知,,则.又因为,根据已知可算出其取值范围,进而得到答案.【详解】解:因为,,所以,又+,所以,所以.故选:A.7、A【解析】根复合函数的单调性,得到函数f(x)的单调性,求解函数的最小值f(x)min=8,构造新函数g(a)=a+log2a-8,利用零点的存在定理,即可求解.【详解】由题意,根复合函数的单调性,可得函数f(x)在[0,+∞)上是增函数,在(-∞,0)上递减,所以函数f(x)的最小值f(x)min=f(0)=a+log2a=8,令g(a)=a+log2a-8,a>0,则g(5)=log25-3<0,g(6)=log26-2>0,又g(a)在(0,+∞)上是增函数,所以实数a所在的区间为(5,6)【点睛】本题主要考查了函数的单调性的应用,以及零点的存在定理的应用,其中解答中根据复合函数的单调性,求得函数的最小值,构造新函数,利用零点的存在定理求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.8、A【解析】由题意结合辅助角公式可得,进而可得g(x)=2sin,由三角函数的性质可得,化简即可得解.【详解】设f(x)=cosx+sinx=2sin,向左平移m个单位长度得g(x)=2sin,∵g(x)的图象关于y轴对称,∴,∴m=,由m>0可得m的最小值为.故选:A.【点睛】本题考查了辅助角公式及三角函数图象与性质的应用,考查了运算求解能力,属于基础题.9、A【解析】首先理解圆锥体中母线与底面所成角的正弦值为它的高与母线的比值,结合圆锥的体积公式及已知条件即可求出正弦值.【详解】如图,根据圆锥的性质得底面圆,所以即为母线与底面所成角,设圆锥的高为,则由题意,有,所以,所以母线的长为,则圆锥的母线与底面所成角的正弦值为.故选:A【点睛】本题考查了圆锥的体积,线面角的概念,考查运算求解能力,是基础题.本题解题的关键在于根据圆锥的性质得即为母线与底面所成角,再根据几何关系求解.10、D【解析】对ABC举反例判断即可;对D,根据函数的单调性判断即可【详解】对于A,,,选项A错误;对于B,,时,,不存在,选项B错误;对于C,由指数函数的单调性可知,选项C错误;对于D,由不等式性质可得,选项D正确故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、x+y-5=0或2x-3y=0【解析】当直线经过原点时,在两坐标轴上的截距相等,可得其方程为2x﹣3y=0;当直线不经过原点时,可得它的斜率为﹣1,由此设出直线方程并代入P的坐标,可求出其方程为x+y﹣5=0,最后加以综合即可得到答案【详解】当直线经过原点时,设方程为y=kx,∵直线经过点P(3,2),∴2=3k,解之得k,此时的直线方程为yx,即2x﹣3y=0;当直线不经过原点时,设方程为x+y+c=0,将点P(3,2)代入,得3+2+c=0,解之得c=﹣5,此时的直线方程为x+y﹣5=0综上所述,满足条件的直线方程为:2x﹣3y=0或x+y﹣5=0故答案为:x+y-5=0或2x-3y=0【点睛】本题给出直线经过定点且在两个轴上的截距相等,求直线的方程.着重考查了直线的基本量与基本形式等知识,属于基础题12、①.②.【解析】利用数形结合可得实数m的取值范围,然后利用对数函数的性质可得,再利用正弦函数的对称性及二次函数的性质即求.【详解】作出函数与函数的图象,则可知实数m的取值范围为,由题可知,,∵,∴,即,又,,∴,又函数在上单调递增,∴,即.故答案为:;.【点睛】关键点点睛;本题的关键是数形结合,结合对数函数的性质及正弦函数的性质可得,再利用二次函数的性质即解.13、【解析】由复合函数的同增异减性质判断得在上单调递减,再结合对称轴和区间边界值建立不等式即可求解.【详解】由复合函数的同增异减性质可得,在上严格单调递减,二次函数开口向上,对称轴为所以,即故答案为:14、;【解析】根据存在量词的命题的否定为全称量词命题即可得解;【详解】解:因为命题“”为存在量词命题,其否定为全称量词命题为故答案为:15、【解析】如图以点为坐标原点,分别以为轴建立空间直角坐标系,利用空间向量求解即可.【详解】解:因为三棱柱为直三棱柱,且,所以以点为坐标原点,分别以为轴建立空间直角坐标系,设,则,所以,所以,因为异面直线所成的角在,所以异面直线与所成的角等于,故答案为:【点睛】此题考查异面直线所成角,利用了空间向量进行求解,属于基础题.16、9【解析】根据扇形的弧长是6,圆心角为2,先求得半径,再代入公式求解.【详解】因为扇形的弧长是6,圆心角为2,所以,所以扇形的面积为,故答案为:9.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由斜率,再利用点斜式即可求得直线方程;(2)由直线的方程,分别令为,得到纵截距与横截距,即可得到直线与两坐标轴所围成的三角形的面积.【详解】(1)直线方程为:,即.(2)由(1)令,则;令,则.所以直线与两坐标轴所围成的三角形的面积为:.【点睛】本题考查直线的点斜式方程,直线截距的意义,三角形的面积,属于基础题.18、(1)见解析(2)正四棱柱的体积比正四棱锥的体积大【解析】1该四棱柱的底面为正方体,侧棱垂直底面,可知其由两个一样的正方形和四个完全相同的长方形组成,对图形进行切割,画出图形即可,画法不唯一;2正四棱柱的底面边长为2a,高为a,正四棱锥的底面边长为2a,高为h=(3a)解析:(1)将正方形甲按图中虚线剪开,以两个正方形为底面,四个长方形为侧面,焊接成一个底面边长为2a,高为a的正四棱柱将正方形乙按图中虚线剪开,以两个长方形焊接成边长为2a的正方形为底面,三个等腰三角形为侧面,两个直角三角形合拼成为一侧面,焊接成一个底面板长为2a,斜高为3a的正四棱锥(2)∵正四棱柱的底面边长为2a,高为a,∴其体积V1又∵正四棱锥的底面边长为2a,高为h=(3a)∴其体积V∵42即4>823,4故所制作的正四棱柱的体积比正四棱锥的体积大(说明:裁剪方式不唯一,计算的体积也不一定相等)点睛:本题考查了四棱锥和四棱柱的知识,需要掌握二者的特征以及其体积的求法,对于图形进行分割,画出图形即可,注意画法不唯一,结合体积公式求得体积,然后比较大小即完成解答19、(1)证明见解析;(2).【解析】(1)先证明BC⊥平面CMD,推出DM⊥BC,然后证明DM⊥平面BMC,由线面垂直推出面面垂直;(2)当M位于半圆弧CD的中点处时,四棱锥M﹣ABCD的高最大,体积也最大,相应数值代入棱锥的体积公式即可得解.【详解】(1)证明:由题设知,平面CMD⊥平面ABCD,交线为CD,∵BC⊥CD,BC在平面ABCD内,∴BC⊥平面CMD,故DM⊥BC,又DM⊥CM,BC∩CM=C,∴DM⊥平面BMC,又DM在平面AMD内,∴平面AMD⊥平面BMC;(2)依题意,当M位于半圆弧CD的中点处时,四棱锥M﹣ABCD的高最大,体积也最大,因为正方形边长为1,所以半圆的半径为,此时四棱锥M﹣ABCD的体积为,故四棱锥M﹣ABCD体积的最大值为【点睛】本题考查面面垂直的证明,需转化为证明线面垂直,考查棱锥的体积计算,属于中档题.20、(1);(2).【解析】(1)由即可求解;(2)先整理,利用复合函数单调性即可求出的最小值,令最小值等于4解方程即可.【详解】(1)若有意义,则,解得,故的定义域为;(2)由于令,则∵时,在上是减函数,∴又,则,即,解得或(舍)故若函数的最小值为,则.【点睛】关键点点睛:本题在解题的过程中要注意定义域,关键在于的范围和的单调性.21、(1)增区间是[kπ-,kπ+],k∈Z(2)【解析】首先根据已知条件,求出周期,进而求出的值,确定出函数解析式,由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国抗菌肽项目创业计划书
- 2025年泰盈复合材料制品厂建设项目环评报告表
- 大同市中医院IgG4相关疾病诊疗思路考核
- 黑河市人民医院抗体鉴定技术考核
- 中国切削油项目创业计划书
- 中国无机鞣料项目创业计划书
- 邢台市人民医院神经电生理室主任技术管理考核
- 鸡西市人民医院风险管理与内部控制运营视角试题
- 晋城市人民医院脑死亡判定脑电图考核
- 中国矿物油增稠剂项目经营分析报告
- 2025年年国产AI芯片和高性能处理器厂商排名和行业趋势报告
- 2025年全国职业病诊断医师培训职业性放射性疾病复习题库及答案
- 垃圾知识分类培训课件
- 2025年及未来5年中国烘焙花生行业市场调研分析及投资战略咨询报告
- 船舶现场应急预案
- 2025年森林防火考试题目及答案
- 正大杯第十二届全国大学生市场调研与分析大赛题库和答案
- 医务人员进修工作汇报
- 2025-2026学年北师大版二年级上册第二单元《测量(一)》测试卷 及答案(三套)
- 2025至2030中国医用雾化器行业市场发展分析及竞争格局与风险对策报告
- 统编版2025-2026学年语文六年级上册期中阶段培优情境卷试题(有答案)
评论
0/150
提交评论