版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省广安遂宁资阳等七市2025届高一数学第一学期期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,且,则的最小值为()A. B.C.2 D.12.设奇函数f(x)在(0,+∞)上为减函数,且f(1)=0,则不等式<0的解集为()A.(-1,0)∪(1,+∞) B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞) D.(-1,0)∪(0,1)3.在,,中,最大的数为()A.a B.bC.c D.d4.函数(且)的图像必经过点()A. B.C. D.5.是上的奇函数,满足,当时,,则()A. B.C. D.6.下列函数中,以为最小正周期的偶函数是()A.y=sin2x+cos2xB.y=sin2xcos2xC.y=cos(4x+)D.y=sin22x﹣cos22x7.为了得到函数的图象,可以将函数的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度8.已知函数,,则函数的值域为()A B.C. D.9.下列函数中,既是奇函数又在区间上是增函数的是()A. B.C. D.10.已知,则a,b,c的大小关系为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.不等式的解集是___________.(用区间表示)12.已知函数,若,不等式恒成立,则的取值范围是___________.13.已知一组数据的平均数,方差,则另外一组数据的平均数为___________,方差为___________.14.函数的图象必过定点___________15.若将函数的图像向左平移个单位后所得图像关于轴对称,则的最小值为___________.16.已知直线与两坐标轴所围成的三角形的面积为1,则实数值是____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设是定义在上的偶函数,的图象与的图象关于直线对称,且当时,()求的解析式()若在上为增函数,求的取值范围()是否存在正整数,使的图象的最高点落在直线上?若存在,求出的值;若不存在,请说明理由18.已知函数,(1)求函数的定义域;(2)试讨论关于x的不等式的解集19.已知函数,(1)若,求在区间上的最小值;(2)若在区间上有最大值3,求实数的值.20.(1)计算:.(2)若,求的值.21.已知函数,(1)求的单调递增区间;(2)令函数,再从条件①、条件②这两个条件中选择一个作为已知,求在区间上的最大值及取得最大值时的值条件①:;条件②:注:如果选择条件①和条件②分别解答,按第一个解答计分
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由已知条件得出,再将代数式与相乘,展开后利用基本不等式可求得的最小值.【详解】已知,且,,由基本不等式可得,当且仅当时,等号成立,因此,的最小值为.故选:A.【点睛】本题考查利用基本不等式求代数式的最值,考查的妙用,考查计算能力,属于基础题.2、C【解析】利用函数奇偶性,等价转化目标不等式,再结合已知条件以及函数单调性,即可求得不等式解集.【详解】∵f(x)为奇函数,故可得,则<0等价于.∵f(x)在(0,+∞)上为减函数且f(1)=0,∴当x>1时,f(x)<0.∵奇函数图象关于原点对称,∴在(-∞,0)上f(x)为减函数且f(-1)=0,即x<-1时,f(x)>0.综上使<0的解集为(-∞,-1)∪(1,+∞)故选:.【点睛】本题考查利用函数奇偶性和单调性解不等式,属综合基础题.3、B【解析】逐一判断各数的范围,即找到最大的数.【详解】因为,所以;;;.故最大.故选:B.【点睛】本题考查了根据实数范围比较实数大小,属于基础题.4、D【解析】根据指数函数的性质,求出其过的定点【详解】解:∵(且),且令得,则函数图象必过点,故选:D5、D【解析】根据函数的周期性与奇偶性可得,结合当时,,得到结果.【详解】∵∴的周期为4,∴,又是上奇函数,当时,,∴,故选:D【点睛】本题考查函数的周期性与奇偶性,解题的关键是根据函数的性质将未知解析式的区间上函数的求值问题转化为已知解析式的区间上来求,本题考查了转化化归的能力及代数计算的能力.6、D【解析】A中,周期为,不是偶函数;B中,周期为,函数为奇函数;C中,周期为,函数为奇函数;D中,周期为,函数为偶函数7、D【解析】,据此可知,为了得到函数的图象,可以将函数的图象向右平移个单位长度.本题选择D选项.8、B【解析】先判断函数的单调性,再利用单调性求解.【详解】因为,在上都是增函数,由复合函数的单调性知:函数,在上为增函数,所以函数的值域为,故选:B9、B【解析】先由函数定义域,排除A;再由函数奇偶性排除D,最后根据函数单调性,即可得出B正确,C错误.【详解】A选项,的定义域为,故A不满足题意;D选项,余弦函数偶函数,故D不满足题意;B选项,正切函数是奇函数,且在上单调递增,故在区间是增函数,即B正确;C选项,正弦函数是奇函数,且在上单调递增,所以在区间是增函数;因此是奇函数,且在上单调递减,故C不满足题意.故选:B.【点睛】本题主要考查三角函数性质的应用,熟记三角函数的奇偶性与单调性即可,属于基础题型.10、B【解析】首先求出、,即可判断,再利用作差法判断,即可得到,再判断,即可得解;【详解】解:由,所以,可知,又由,有,又由,有,可得,即,故有.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据一元二次不等式解法求不等式解集.【详解】由题设,,即,所以不等式解集为.故答案为:12、【解析】原问题等价于时,恒成立和时,恒成立,从而即可求解.【详解】解:由题意,因为,不等式恒成立,所以时,恒成立,即,所以;时,恒成立,即,令,则,由对勾函数的单调性知在上单调递增,在上单调递减,所以时,,所以;综上,.所以的取值范围是.故答案为:13、①.32②.135【解析】由平均数与方差的性质即可求解.【详解】由题意,数据的平均数为,方差为.故答案为:;14、【解析】f(x)=k(x-1)-ax-1,x=1时,y=f(x)=-1,∴图象必过定点(1,-1).15、【解析】利用辅助角公式将函数化简,再根据三角函数的平移变换及余弦函数的性质计算可得;【详解】解:因,将的图像向左平移个单位,得到,又关于轴对称,所以,,所以,所以当时取最小值;故答案为:16、1或-1【解析】令x=0,得y=k;令y=0,得x=−2k.∴三角形面积S=|xy|=k2.又S=1,即k2=1,值是1或-1.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)见解析.【解析】分析:()当时,,;当时,,从而可得结果;()由题设知,对恒成立,即对恒成立,于是,,从而;()因为为偶函数,故只需研究函数在的最大值,利用导数研究函数的单调性,讨论两种情况,即可筛选出符合题意的正整数.详解:()当时,,;当时,,∴,()由题设知,对恒成立,即对恒成立,于是,,从而()因为为偶函数,故只需研究函数在的最大值令,计算得出()若,即,,故此时不存在符合题意的()若,即,则在上为增函数,于是令,故综上,存在满足题设点睛:本题主要考查利用导数研究函数的单调性、函数奇偶性的应用及利用单调性求参数的范围,属于中档题.利用单调性求参数的范围的常见方法:①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数需注意若函数在区间上是单调的,则该函数在此区间的任意子集上也是单调的;②利用导数转化为不等式或恒成立问题求参数范围.18、(1)(2)答案见解析【解析】(1)解不等式得出定义域;(2)利用对数函数的单调性解不等式得出解集.【小问1详解】由题意可得解得.故函数的定义域为【小问2详解】当时,函数是增函数因为,所以解得.当时,函数是减函数因为,所以解得综上,当时,原不等式的解集为;当时,原不等式的解集为19、(1);(2)或.【解析】(1)先求函数对称轴,再根据对称轴与定义区间位置关系确定最小值取法(2)根据对称轴与定义区间位置关系三种情况分类讨论最大值取法,再根据最大值为3,解方程求出实数的值试题解析:解:(1)若,则函数图像开口向下,对称轴为,所以函数在区间上是单调递增的,在区间上是单调递减的,有又,(2)对称轴为当时,函数在在区间上是单调递减的,则,即;当时,函数在区间上是单调递增的,在区间上是单调递减的,则,解得,不符合;当时,函数在区间上是单调递增的,则,解得;综上所述,或点睛:(1)已知函数的奇偶性求参数,一般采用待定系数法求解,根据得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值;(2)已知函数的奇偶性求函数值或解析式,首先抓住奇偶性讨论函数在各个区间上的解析式,或充分利用奇偶性得出关于的方程,从而可得的值或解析式.20、(1);(2)【解析】(1)根据指数幂运算、对数加法运算以及三角函数的诱导公式一,化简即可求出结果;(2)利用诱导公式和同角的基本关系,对原式化简,可得,再将代入,即可求出结果.【详解】解:(1)原式.(2)因为,所以.21、(1),(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 婴幼儿早期发展课程设计
- 护理骨干领导力与团队建设
- 慈母情深课程设计
- 阿七影视剪辑课件
- 肿瘤心理护理中的文化敏感性护理
- 危重症护理的未来发展方向
- 介绍一种物品的作文8篇
- 企业安全生产管理制度范本(5篇)
- 道德观察观后感作文(14篇)
- 创新科技研发成果兑现承诺书5篇范文
- 电焊基础教学课件
- 安全生产培训规章制度
- DB51∕T 3090-2023 山区公路路堤与高边坡监测技术规程
- 丙烯生产工艺操作规程
- 农业机器人作业效率研究-洞察及研究
- GB/T 45698-2025物业服务客户满意度测评
- 【哈代克罗斯法平差表1200字】
- CJ/T 210-2005无规共聚聚丙烯(PP-R)塑铝稳态复合管
- T/CCS 063-2023井工煤矿智能化供排水系统运维管理规范
- 泵站管理终止合同协议书
- 国际压力性损伤溃疡预防和治疗临床指南(2025年版)解读
评论
0/150
提交评论