




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第四章基本平面图形(压轴题专练)1.已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A. B. C. D.2.如图,已知扇形AOB的半径为2,圆心角为90°,连接AB,则图中阴影部分的面积是()A.π﹣2 B.π﹣4 C.4π﹣2 D.4π﹣43.点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC等于()A.3 B.2 C.3或5 D.2或64.将一张纸按如图的方式折叠,BC、BD为折痕,则∠CBD的度数为()A.80° B.90° C.100° D.110°5.由2点15分到2点30分,时钟的分针转过的角度是()A.30° B.45° C.60° D.90°6.如图,在△ABC中,CA=CB,∠ACB=90°,以AB的中点D为圆心,作圆心角为90°的扇形DEF,点C恰在上,设∠BDF=α(0°<α<90°),当α由小到大变化时,图中阴影部分的面积()A.由小到大 B.由大到小 C.不变 D.先由小到大,后由大到小7.如图,在△ABC中,AB=AC,AB=8,BC=12,分别以AB、AC为直径作半圆,则图中阴影部分的面积是()A. B.16π﹣32 C. D.8.如图,这是中央电视台“曲苑杂谈”中的一幅图案,它是一扇形图形,其中∠AOB为120°,OC长为8cm,CA长为12cm,则阴影部分的面积为()A.64πcm2 B.112πcm2 C.144πcm2 D.152πcm29.如图,一根5m长的绳子,一端拴在互相垂直的围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动),那么小羊A在草地上的最大活动区域面积是()A.πm2 B.πm2 C.πm2 D.πm210.如图,多边形的相邻两边均互相垂直,则这个多边形的周长为()A.21 B.26 C.37 D.4211.已知一条射线OA,若从点O再引两条射线OB和OC,使∠AOB=80°,∠BOC=40°,则∠AOC等于()A.40° B.60°或120° C.120° D.120°或40°12.如图,点M在线段AN的延长线上,且线段MN=20,第一次操作:分别取线段AM和AN的中点M1,N1;第二次操作:分别取线段AM1和AN1的中点M2,N2;第三次操作:分别取线段AM2和AN2的中点M3,N3;……连续这样操作10次,则每次的两个中点所形成的所有线段之和M1N1+M2N2+…+M10N10=()A. B. C. D.13.如图所示,某公司有三个住宅区,A、B、C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.A,B之间 D.B,C之间14.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是.往返于甲、乙两地的火车中途要停靠三个站,则有种不同的票价(来回票价一样),需准备种车票.16.如图,A是硬币圆周上一点,硬币与数轴相切于原点O(A与O点重合).假设硬币的直径为1个单位长度,若将硬币沿数轴正方向滚动一周,点A恰好与数轴上点A′重合,则点A′对应的实数是.17.如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为30cm,贴纸部分的宽为20cm,则贴纸部分的面积为cm2.18.如图,Rt△ABC中,∠BCA=90°,∠BAC=30°,AB=6.△ABC以点B为中心逆时针旋转,使点C旋转至AB边延长线上的C′处,那么AC边转过的图形(图中阴影部分)的面积是.19.已知线段MN,在MN上逐一画点(所画点与M、N不重合),当线段上有1个点时,共有3条线段,当线段上有2个点时,共有6条线段;当线段上有3个点时,共有10条线段;直接写出当线段上有20个点时,共有线段条.20.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(其中∠P=30°)的直角顶点放在点O处,一边OQ在射线OA上,另一边OP与OC都在直线AB的上方.将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.(1)如图2,经过t秒后,OP恰好平分∠BOC.①求t的值;②此时OQ是否平分∠AOC?请说明理由;(2)若在三角板转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠POQ?请说明理由;(3)在(2)问的基础上,经过多少秒OC平分∠POB?(直接写出结果).21.如图,∠AOB为直角,∠AOC为锐角,且OM平分∠BOC,ON平分∠AOC.(1)如果∠AOC=50°,求∠MON的度数.(2)如果∠AOC为任意一个锐角,你能求出∠MON的度数吗?若能,请求出来,若不能,说明为什么?22.(1)如图,已知点C在线段AB上,且AC=6cm,BC=4cm,点M、N分别是AC、BC的中点,求线段MN的长度;(2)若点C是线段AB上任意一点,且AC=a,BC=b,点M、N分别是AC、BC的中点,请直接写出线段MN的长度;(用a、b的代数式表示)(3)在(2)中,把点C是线段AB上任意一点改为:点C是直线AB上任意一点,其他条件不变,则线段MN的长度会变化吗?若有变化,求出结果.23.如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;(3)如图2,动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s的速度沿BA向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?24.已知A、B在数轴上分别表示a、b(1)对照数轴填写下表:a6﹣6﹣62﹣1.5b40﹣4﹣10﹣1.5A、B两点的距离20(2)若A、B两点间的距离记为d,试问d和a、b(a<b)有何数量关系;(3)写出数轴上到7和﹣7的距离之和为14的所有整数,并求这些整数的和;(4)若点C表示的数为x,当点C在什么位置时,|x+1|+|x﹣2|取得的值最小.25.如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.(1)当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度.(2)若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm.(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,求的值.26.探究题:如图①,已知线段AB=14cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若点C恰好是AB中点,则DE=cm;(2)若AC=4cm,求DE的长;(3)试利用“字母代替数”的方法,设AC=acm请说明不论a取何值(a不超过14cm),DE的长不变;(4)知识迁移:如图②,已知∠AOB=120°,过角的内部任一点C画射线OC,若OD、OE分别平分∠AOC和∠BOC,试说明∠DOE=60°与射线OC的位置无关.27.如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB上,此时三角板旋转的角度为度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)在上述直角三角板从图1开始绕点O按30°每秒的速度逆时针旋转270°的过程中,是否存在OM所在直线平分∠BOC和∠AOC中的一个角,ON所在直线平分另一个角?若存在,直接写出旋转时间t,若不存在,说明理由.28.如图,两个形状.大小完全相同的含有30°、60°的三角板如图放置,PA、PB与直线MN重合,且三角板PAC,三角板PBD均可以绕点P逆时针旋转.(1)试说明:∠DPC=90°;(2)如图,若三角板PAC的边PA从PN处开始绕点P逆时针旋转一定角度,PF平分∠APD,PE平分∠CPD,求∠EPF;(3)如图,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速为3°/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为2°/秒,在两个三角板旋转过程中(PC转到与PM重合时,两三角板都停止转动).设两个三角板旋转时间为t秒,则∠BPN=,∠CPD=(用含有t的代数式表示,并化简);以下两个结论:①为定值;②∠BPN+∠CPD为定值,正确的是(填写你认为正确结论的对应序号).29.如图,已知线段AB=4cm.(1)读句画图:延长线段AB到点C,使得AB=2BC.(2)在(1)的条件下,若点P是线段AC的中点,求线段PB的长.(3)延长线段AB到点C,若点P是线段AC的中点,点Q是BC的中点,求线段PQ的长.30.如图,∠AOB=120°,射线OC从OA开始,绕点O逆时针旋转,旋转的速度为每分钟20°;射线OD从OB开始,绕点O逆时针旋转,旋转的速度为每分钟5°,OC和OD同时旋转,设旋转的时间为t(0≤t≤15).(1)当t为何值时,射线OC与OD重合;(2)当t为何值时,射线OC⊥OD;(3)试探索:在射线OC与OD旋转的过程中,是否存在某个时刻,使得射线OC,OB与OD中的某一条射线是另两条射线所夹角的角平分线?若存在,请求出所有满足题意的t的取值,若不存在,请说明理由.
第四章基本平面图形(压轴题专练)1.已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A. B. C. D.【答案】D【解答】解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选:D.2.如图,已知扇形AOB的半径为2,圆心角为90°,连接AB,则图中阴影部分的面积是()A.π﹣2 B.π﹣4 C.4π﹣2 D.4π﹣4【答案】A【解答】解:S阴影部分=S扇形OAB﹣S△OAB==π﹣2故选:A.3.点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC等于()A.3 B.2 C.3或5 D.2或6【答案】D【解答】解:此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB外,所以要分两种情况计算.点A、B表示的数分别为﹣3、1,AB=4.第一种情况:在线段AB外,AC=4+2=6;第二种情况:在线段AB内,AC=4﹣2=2.故选:D.4.将一张纸按如图的方式折叠,BC、BD为折痕,则∠CBD的度数为()A.80° B.90° C.100° D.110°【答案】B【解答】解:∵折叠前后两图形是全等形,∴∠CBD=180°×=90°.故选:B.5.由2点15分到2点30分,时钟的分针转过的角度是()A.30° B.45° C.60° D.90°【答案】D【解答】解:解法1:2点15分,分针指在数字3上,分针水平,当2点30分时,分针指在数字6上,分针垂直于水平时的分针,故分针转的角度是90°;解法2:因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,从2点15分到2点30分分针转过了三份,转过的角度为3×30°=90°.故选D.6.如图,在△ABC中,CA=CB,∠ACB=90°,以AB的中点D为圆心,作圆心角为90°的扇形DEF,点C恰在上,设∠BDF=α(0°<α<90°),当α由小到大变化时,图中阴影部分的面积()A.由小到大 B.由大到小 C.不变 D.先由小到大,后由大到小【答案】C【解答】解:作DM⊥AC于M,DN⊥BC于N,连接DC,∵CA=CB,∠ACB=90°,∴∠A=∠B=45°,DM=AD=AB,DN=BD=AB,∴DM=DN,∴四边形DMCN是正方形,∴∠MDN=90°,∴∠MDG=90°﹣∠GDN,∵∠EDF=90°,∴∠NDH=90°﹣∠GDN,∴∠MDG=∠NDH,在△DMG和△DNH中,,∴△DMG≌△DNH,∴四边形DGCH的面积=正方形DMCN的面积,∵正方形DMCN的面积=DM2=AB2,∴四边形DGCH的面积=,∵扇形FDE的面积==,∴阴影部分的面积=扇形面积﹣四边形DGCH的面积=(定值),故选:C.7.如图,在△ABC中,AB=AC,AB=8,BC=12,分别以AB、AC为直径作半圆,则图中阴影部分的面积是()A. B.16π﹣32 C. D.【答案】D【解答】解:设半圆与底边的交点是D,连接AD.∵AB是直径,∴AD⊥BC.又∵AB=AC,∴BD=CD=6.根据勾股定理,得AD==2.∵阴影部分的面积的一半=以AB为直径的半圆的面积﹣三角形ABD的面积=以AC为直径的半圆的面积﹣三角形ACD的面积,∴阴影部分的面积=以AB为直径的圆的面积﹣三角形ABC的面积=16π﹣×12×2=16π﹣12.故选:D.8.如图,这是中央电视台“曲苑杂谈”中的一幅图案,它是一扇形图形,其中∠AOB为120°,OC长为8cm,CA长为12cm,则阴影部分的面积为()A.64πcm2 B.112πcm2 C.144πcm2 D.152πcm2【答案】B【解答】解:∵OA=OC+CA=20cm,S阴影部分=﹣=112πcm2.故选:B.9.如图,一根5m长的绳子,一端拴在互相垂直的围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动),那么小羊A在草地上的最大活动区域面积是()A.πm2 B.πm2 C.πm2 D.πm2【答案】D【解答】解:大扇形的圆心角是90度,半径是5,所以面积==m2;小扇形的圆心角是180°﹣120°=60°,半径是1m,则面积==(m2),则小羊A在草地上的最大活动区域面积=+=(m2).故选:D.10.如图,多边形的相邻两边均互相垂直,则这个多边形的周长为()A.21 B.26 C.37 D.42【答案】D【解答】解:多边形的周长=16×2+5×2=42.故选:D.11.已知一条射线OA,若从点O再引两条射线OB和OC,使∠AOB=80°,∠BOC=40°,则∠AOC等于()A.40° B.60°或120° C.120° D.120°或40°【答案】D【解答】解:如果射线OC在∠AOB内部,∠AOC=∠AOB﹣∠BOC=40°,如果射线OC在∠AOB外部,∠AOC=∠AOB+∠BOC=120度.故选:D.12.如图,点M在线段AN的延长线上,且线段MN=20,第一次操作:分别取线段AM和AN的中点M1,N1;第二次操作:分别取线段AM1和AN1的中点M2,N2;第三次操作:分别取线段AM2和AN2的中点M3,N3;……连续这样操作10次,则每次的两个中点所形成的所有线段之和M1N1+M2N2+…+M10N10=()A. B. C. D.【答案】A【解答】解:∵线段MN=20,线段AM和AN的中点M1,N1,∴M1N1=AM1﹣AN1=AM﹣AN=(AM﹣AN)=MN=×20=10.∵线段AM1和AN1的中点M2,N2;∴M2N2=AM2﹣AN2=AM1﹣AN1=(AM1﹣AN1)=M1N1=×20=×20=5.发现规律:MnNn=×20∴M1N1+M2N2+…+M10N10=+×20+×20+…+×20=20(+++…+)=20()=20(1﹣)=20﹣故选:A.13.如图所示,某公司有三个住宅区,A、B、C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.A,B之间 D.B,C之间【答案】A【解答】解:①以点A为停靠点,则所有人的路程的和=15×100+10×300=4500(米),②以点B为停靠点,则所有人的路程的和=30×100+10×200=5000(米),③以点C为停靠点,则所有人的路程的和=30×300+15×200=12000(米),④当在AB之间停靠时,设停靠点到A的距离是m,则(0<m<100),则所有人的路程的和是:30m+15(100﹣m)+10(300﹣m)=4500+5m>4500,⑤当在BC之间停靠时,设停靠点到B的距离为n,则(0<n<200),则总路程为30(100+n)+15n+10(200﹣n)=5000+35n>4500.∴该停靠点的位置应设在点A;故选:A.二.填空题(共6小题)14.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是n2+2n.【答案】见试题解答内容【解答】解:第一个是1×3,第二个是2×4,第三个是3×5,…第n个是n•(n+2)=n2+2n故答案为:n2+2n.15.往返于甲、乙两地的火车中途要停靠三个站,则有10种不同的票价(来回票价一样),需准备20种车票.【答案】见试题解答内容【解答】解:此题相当于一条线段上有3个点,有多少种不同的票价即有多少条线段:4+3+2+1=10;有多少种车票是要考虑顺序的,则有10×2=20.16.如图,A是硬币圆周上一点,硬币与数轴相切于原点O(A与O点重合).假设硬币的直径为1个单位长度,若将硬币沿数轴正方向滚动一周,点A恰好与数轴上点A′重合,则点A′对应的实数是π.【答案】见试题解答内容【解答】解:将硬币沿数轴正方向滚动一周,点A恰好与数轴上点A'重合,则转过的距离是圆的周长是π,因而点A'对应的实数是π.故答案为:π.17.如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为30cm,贴纸部分的宽为20cm,则贴纸部分的面积为cm2.【答案】见试题解答内容【解答】解:S=﹣=cm2.18.如图,Rt△ABC中,∠BCA=90°,∠BAC=30°,AB=6.△ABC以点B为中心逆时针旋转,使点C旋转至AB边延长线上的C′处,那么AC边转过的图形(图中阴影部分)的面积是9π.【答案】见试题解答内容【解答】解:根据旋转变换的性质,△ABC≌△A′BC′,∵∠BCA=90°,∠BAC=30°,AB=6,∴BC=AB=3,∴阴影面积=﹣=9π.19.已知线段MN,在MN上逐一画点(所画点与M、N不重合),当线段上有1个点时,共有3条线段,当线段上有2个点时,共有6条线段;当线段上有3个点时,共有10条线段;直接写出当线段上有20个点时,共有线段231条.【答案】见试题解答内容【解答】解:由题意可得:当在MN上有20个点时,共有线段:1+2+3+…+20+21=(1+21)×21=231,故答案为:231.三.解答题(共11小题)20.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(其中∠P=30°)的直角顶点放在点O处,一边OQ在射线OA上,另一边OP与OC都在直线AB的上方.将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.(1)如图2,经过t秒后,OP恰好平分∠BOC.①求t的值;②此时OQ是否平分∠AOC?请说明理由;(2)若在三角板转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠POQ?请说明理由;(3)在(2)问的基础上,经过多少秒OC平分∠POB?(直接写出结果).【答案】见试题解答内容【解答】解(1)①∵∠AOC=30°,∴∠BOC=180°﹣30°=150°.∵OP平分∠BOC,∴∠COP=∠BOC=75°.∴∠COQ=90°﹣75°=15°.∴∠AOQ=∠AOC﹣∠COQ=30°﹣15°=15°.所以t=15°÷3°=5秒;②是,理由如下:∵∠COQ=15°,∠AOQ=15°,∴OQ平分∠AOC;(2)∵OC平分∠POQ,∴∠COQ=∠POQ=45°.根据旋转的速度,设∠AOQ=3t,∠AOC=30°+6t,由∠AOC﹣∠AOQ=45°,可得30°+6t﹣3t=45°,解得t=5秒;所以5秒时OC平分∠POQ;(3)设经过t秒后OC平分∠POB.∵OC平分∠POB,∴∠BOC=∠BOP.∵∠AOQ+∠BOP=90°,∴∠BOP=90°﹣3t.又∠BOC=180°﹣∠AOC=180°﹣30°﹣6t,∴180°﹣30°﹣6t=(90°﹣3t),解得t=秒.21.如图,∠AOB为直角,∠AOC为锐角,且OM平分∠BOC,ON平分∠AOC.(1)如果∠AOC=50°,求∠MON的度数.(2)如果∠AOC为任意一个锐角,你能求出∠MON的度数吗?若能,请求出来,若不能,说明为什么?【答案】见试题解答内容【解答】解:(1)因为OM平分∠BOC,ON平分∠AOC所以∠MOC=∠BOC,∠NOC=∠AOC所以∠MON=∠MOC﹣∠NOC=(∠BOC﹣∠AOC)=(90°+50°﹣50°)=45°.(2)同理,∠MON=∠MOC﹣∠NOC=(∠BOC﹣∠AOC)=(∠BOA+∠AOC﹣∠AOC)=∠BOA=45°.22.(1)如图,已知点C在线段AB上,且AC=6cm,BC=4cm,点M、N分别是AC、BC的中点,求线段MN的长度;(2)若点C是线段AB上任意一点,且AC=a,BC=b,点M、N分别是AC、BC的中点,请直接写出线段MN的长度;(用a、b的代数式表示)(3)在(2)中,把点C是线段AB上任意一点改为:点C是直线AB上任意一点,其他条件不变,则线段MN的长度会变化吗?若有变化,求出结果.【答案】见试题解答内容【解答】解:(1)∵AC=6cm,点M是AC的中点∴CM=AC=3cm∵BC=4cm,点N是BC的中点∴CN=BC=2cm∴MN=CM+CN=5cm∴线段MN的长度为5cm.(2).(3)线段MN的长度会变化.当点C在线段AB上时,由(2)知当点C在线段AB的延长线时,如图:则AC=a>BC=b∵AC=a点M是AC的中点∴CM=AC=a∵BC=b点N是BC的中点∴CN=BC=b∴MN=CM﹣CN=当点C在线段BA的延长线时,如图:则AC=a<BC=b同理可求:CM=AC=aCN=BC=b∴MN=CN﹣CM=∴综上所述,线段MN的长度变化,,,.23.如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;(3)如图2,动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s的速度沿BA向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?【答案】见试题解答内容【解答】解:(1)∵线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点,∴CM=AC=5厘米,CN=BC=3厘米,∴MN=CM+CN=8厘米;(2)∵点M,N分别是AC,BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN=AC+BC=a;(3)设运动t秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点.①当0<t≤5时,C是线段PQ的中点,得10﹣2t=6﹣t,解得t=4;②当5<t≤时,P为线段CQ的中点,2t﹣10=16﹣3t,解得t=;③当<t≤6时,Q为线段PC的中点,6﹣t=3t﹣16,解得t=;④当6<t≤8时,C为线段PQ的中点,2t﹣10=t﹣6,解得t=4(舍),综上所述:t=4或或.24.已知A、B在数轴上分别表示a、b(1)对照数轴填写下表:a6﹣6﹣62﹣1.5b40﹣4﹣10﹣1.5A、B两点的距离20(2)若A、B两点间的距离记为d,试问d和a、b(a<b)有何数量关系;(3)写出数轴上到7和﹣7的距离之和为14的所有整数,并求这些整数的和;(4)若点C表示的数为x,当点C在什么位置时,|x+1|+|x﹣2|取得的值最小.【答案】见试题解答内容【解答】解:(1)对照数轴填写下表:a6﹣6﹣62﹣1.5b40﹣4﹣10﹣1.5A、B两点的距离262120(2)由(1)可得:d=|a﹣b|或d=b﹣a;(3)只要在﹣7和7之间的整数均满足到7和﹣7的距离之和为14,有:﹣7、﹣6、﹣5、﹣4、﹣3、﹣2、﹣1、0、1、2、3、4、5、6、7,所有满足条件的整数之和为:﹣7+(﹣6)+(﹣5)+(﹣4)+(﹣3)+(﹣2)+(﹣1)+0+1+2+3+4+5+6+7=0;(4)根据数轴的几何意义可得﹣1和2之间的任何一点均能使|x+1|+|x﹣2|取得的值最小.故可得:点C的范围在:﹣1≤x≤2时,能满足题意.25.如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.(1)当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度.(2)若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm.(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,求的值.【答案】见试题解答内容【解答】解:(1)①当P在线段AB上时,由PA=2PB及AB=60,可求得PA=40,OP=60,故点P运动时间为60秒.若AQ=时,BQ=40,CQ=50,点Q的运动速度为50÷60=(cm/s);若BQ=时,BQ=20,CQ=30,点Q的运动速度为30÷60=(cm/s).②点P在线段AB延长线上时,由PA=2PB及AB=60,可求得PA=120,OP=140,故点P运动时间为140秒.若AQ=时,BQ=40,CQ=50,点Q的运动速度为50÷140=(cm/s);若BQ=时,BQ=20,CQ=30,点Q的运动速度为30÷140=(cm/s).(2)设运动时间为t秒,则t+3t=90±70,t=5或40,∵点Q运动到O点时停止运动,∴点Q最多运动30秒,当点Q运动30秒到点O时PQ=OP=30cm,之后点P继续运动40秒,则PQ=OP=70cm,此时t=70秒,故经过5秒或70秒两点相距70cm;(3)如图1,设OP=xcm,点P在线段AB上,20≤x≤80,OB﹣AP=80﹣(x﹣20)=100﹣x,EF=OF﹣OE=(OA+AB)﹣OE=(20+30)﹣=50﹣,∴==2.26.探究题:如图①,已知线段AB=14cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若点C恰好是AB中点,则DE=7cm;(2)若AC=4cm,求DE的长;(3)试利用“字母代替数”的方法,设AC=acm请说明不论a取何值(a不超过14cm),DE的长不变;(4)知识迁移:如图②,已知∠AOB=120°,过角的内部任一点C画射线OC,若OD、OE分别平分∠AOC和∠BOC,试说明∠DOE=60°与射线OC的位置无关.【答案】见试题解答内容【解答】解:(1)∵AB=14cm,点D、E分别是AC和BC的中点,∴DE=DC+EC=AC+BC=AB=7cm故答案为:7;(2)∵AC=4cm,AB=14cm,∴BC=AB﹣AC=10cm,又∵D为AC中点,E为BC中点,∴CD=2cm,CE=5cm,∴DE=CD+CE=7cm;(3)∵AC=acm,∴BC=AB﹣AC=(14﹣a)cm,又∵D为AC中点,E为BC中点,∴CD=acm,CE=(14﹣a)cm,∴DE=CD+CE=a+(14﹣a)=7cm,∴无论a取何值(不超过14)DE的长不变;(4)设∠AOC=α,∠BOC=120°﹣α,∵OD平分∠AOC,OE平分∠BOC,∴∠COD=,∠COE=(120°﹣α),∴∠DOE=∠COD+∠COE=+(120°﹣α)=60°,∴∠DOE=60°,与OC位置无关.27.如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB上,此时三角板旋转的角度为90度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)在上述直角三角板从图1开始绕点O按30°每秒的速度逆时针旋转270°的过程中,是否存在OM所在直线平分∠BOC和∠AOC中的一个角,ON所在直线平分另一个角?若存在,直接写出旋转时间t,若不存在,说明理由.【答案】见试题解答内容【解答】解:(1)根据旋转的性质可知:旋转角为∠MON=90°.故答案为90.(2)如图3:∠AOM﹣∠NOC=30°,理由如下:∵∠AOC+∠BOC=180°,∠AOC:∠BOC=1:2,∴∠AOC+2∠AOC=180°,∴∠AOC=60°,∴∠AON+CON=60°,①∵∠MON=90°,∴∠AOM+∠AON=90°,②②﹣①,得∠AOM﹣∠CON=30°.(3)如图4,当OM平分∠BOC时,ON所在直线平分∠AOC,∠BOM=60°,∴三角板绕点O逆时针旋转60°,此时t=60÷30=2(秒);如图5,当ON平分∠AOC时,OM所在直线平分∠BOC,∠CON=30°,∴三角板绕点O逆时针旋转240°,此时t=240÷30=8(秒).当OM旋转150度时也符合要求,此时旋转了5秒.答:旋转时间为2秒或5秒或8秒.28.如图,两个形状.大小完全相同的含有30°、60°的三角板如图放置,PA、PB与直线MN重合,且三角板PAC,三角板PBD均可以绕点P逆时针旋转.(1)试说明:∠DPC=90°;(2)如图,若三角板PAC的边P
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论