版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海嘉定区外国语学校2025届高二数学第一学期期末学业水平测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,则()A. B.C. D.2.已知命题p:,,则命题p的否定为()A, B.,C., D.,3.已知直线与圆相交于两点,当的面积最大时,的值是()A. B.C. D.4.过两点和的直线的斜率为()A. B.C. D.5.120°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB.已知,,,则CD的长为()A. B.C. D.6.为调查参加考试的高二级1200名学生的成绩情况,从中抽查了100名学生的成绩,就这个问题来说,下列说法正确的是()A.1200名学生是总体 B.每个学生是个体C.样本容量是100 D.抽取的100名学生是样本7.直线分别交坐标轴于A,B两点,O为坐标原点,三角形OAB的内切圆上有动点P,则的最小值为()A.16 B.18C.20 D.228.点在圆上,点在直线上,则的最小值是()A. B.C. D.9.已知函数的导函数的图像如图所示,则下列判断正确的是()A.在区间上,函数增函数 B.在区间上,函数是减函数C.为函数的极小值点 D.2为函数的极大值点10.已知分别是等差数列的前项和,且,则()A. B.C. D.11.从某个角度观察篮球(如图甲),可以得到一个对称的平面图形,如图乙所示,篮球的外轮廓为圆,将篮球表面的粘合线视为坐标轴和双曲线,若坐标轴和双曲线与圆的交点将圆的周长八等分,且,则该双曲线的离心率为()A. B.C.2 D.12.在下列函数中,求导错误的是()A., B.,C., D.,二、填空题:本题共4小题,每小题5分,共20分。13.已知是双曲线的左、右焦点,若为双曲线上一点,且,则__________.14.若椭圆的焦点在轴上,且长轴长是短轴长的2倍,则______.15.在中,若面积,则______16.已知抛物线的焦点F恰好是椭圆的右焦点,且两条曲线交点的连线过点F,则该椭圆的离心率为____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前n项和为,,且(1)求数列的通项公式;(2)令,记数列的前n项和为,求证:18.(12分)已知直线l过点A(﹣3,1),且与直线4x﹣3y+t=0垂直(1)求直线l的一般式方程;(2)若直线l与圆C:x2+y2=m相交于点P,Q,且|PQ|=8,求圆C方程19.(12分)已知数列的前n项和为,且(1)证明数列是等比数列,并求出数列的通项公式;(2)在与之间插入n个数,使得包括与在内的这个数成等差数列,其公差为,求数列的前n项和20.(12分)如图,在四棱锥中,平面,底面为正方形,且,点在棱上,且直线与平面所成角的正弦值为(1)求点的位置;(2)求点到平面的距离21.(12分)已知数列{an}满足,(1)记,证明:数列{bn}为等比数列,并求数列{bn}的通项公式;(2)记数列{bn}前n项和为Tn,证明:22.(10分)已知圆M:的圆心为M,圆N:的圆心为N,一动圆与圆N内切,与圆M外切,动圆的圆心E的轨迹为曲线C(1)求曲线C的方程;(2)已知点,直线l与曲线C交于A,B两点,且,直线l是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】解一元二次不等式求集合A,再由集合的交运算求即可.【详解】由题设,,∴.故选:C.2、A【解析】根据特称命题的否定是全称命题,结合已知条件,即可求得结果.【详解】因为命题p:,,故命题p的否定为:,.故选:A.3、C【解析】利用点到直线的距离公式和弦长公式可以求出的面积是关于的一个式子,即可求出答案.【详解】圆心到直线的距离,弦长为..当,即时,取得最大值.故选:C.4、D【解析】应用两点式求直线斜率即可.【详解】由已知坐标,直线的斜率为.故选:D5、B【解析】由,把展开整理求解【详解】由已知可得:,,,,=41,∴.故选:B6、C【解析】根据总体、个体、样本容量、样本的定义,结合题意,即可判断和选择.【详解】根据题意,总体是名学生的成绩;个体是每个学生的成绩;样本容量是,样本是抽取的100名学生的成绩;故正确的是C.故选:C.7、B【解析】由题意,求出内切圆的半径和圆心坐标,设,则,由表示内切圆上的动点P到定点的距离的平方,从而即可求解最小值.【详解】解:因为直线分别交坐标轴于A,B两点,所以设,则,因为,所以三角形OAB的内切圆半径,内切圆圆心为,所以内切圆的方程为,设,则,因为表示内切圆上的动点P到定点的距离的平方,且在内切圆内,所以,所以,,即的最小值为18,故选:B.8、B【解析】根据题意可知圆心,又由于线外一点到已知直线的垂线段最短,结合点到直线的距离公式,即可求出结果.【详解】由题意可知,圆心,所以圆心到的距离为,所以的最小值为.故选:B.9、D【解析】根据导函数与原函数的关系可求解.【详解】对于A,在区间,,故A不正确;对于B,在区间,,故B不正确;对于C、D,由图可知在区间上单调递增,在区间上单调递减,且,所以为函数的极大值点,故C不正确,D正确.故选:D10、D【解析】利用及等差数列的性质进行求解.【详解】分别是等差数列的前项和,故,且,故,故选:D11、B【解析】设出双曲线方程,把双曲线上的点的坐标表示出来并代入到方程中,找到的关系即可求解.【详解】以O为原点,AD所在直线为x轴建系,不妨设,则该双曲线过点且,将点代入方程,故离心率为,故选:B【点睛】本题考查已知点在双曲线上求双曲线离心率的方法,属于基础题目12、B【解析】分别求得每个函数的导数即可判断.详解】;;;.故求导错误的是B.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、17【解析】根据双曲线的定义求解【详解】由双曲线方程知,,,又.,所以(1舍去)故答案为:1714、4【解析】根据椭圆焦点在轴上方程的特征进行求解即可.【详解】因为椭圆的焦点在轴上,所以有,因为长轴长是短轴长的2倍,所以有,故答案为:415、##【解析】结合三角形面积公式与余弦定理得,进而得答案.【详解】解:由三角形的面积公式得,所以,因为,所以,即,因为,所以故答案为:16、【解析】设两条曲线交点为根据椭圆和抛物线对称性知,不妨点A在第一象限,由A在抛物线上得,A在椭圆上得.则由条件得:.解得(舍去)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】(1)依题意可得,即可得到是以为首项,为公比的等比数列,从而求出数列的通项公式;(2)由(1)可得,利用错位相减法求和,即可证明;【小问1详解】解:因为,,所以,所以是以为首项,为公比的等比数列,所以,所以;【小问2详解】解:由(1)可知,所以①,所以②;①②得所以;18、(1)3x+4y+5=0(2)x2+y2=17【解析】(1)由垂直关系得过直线l的斜率,由点斜式化简即可求解l的一般式方程;(2)结合勾股定理建立弦心距(由点到直线距离公式求解),半弦长,圆半径的基本关系,解出,即可求解圆C的方程【小问1详解】因为直线l与直线4x﹣3y+t=0垂直,所以直线l的斜率为,故直线l的方程为,即3x+4y+5=0,因此直线l的一般式方程为3x+4y+5=0;【小问2详解】圆C:x2+y2=m的圆心为(0,0),半径为,圆心(0,0)到直线l的距离为,则半径满足m=42+12=17,即m=17,所以圆C:x2+y2=1719、(1)证明见解析,(2)【解析】(1)根据公式得到,得到,再根据等比数列公式得到答案.(2)根据等差数列定义得到,再利用错位相减法计算得到答案.【小问1详解】,当时,,得到;当时,,两式相减得到,整理得到,即,故,数列是首项为,公比为的等比数列,,即,验证时满足条件,故.【小问2详解】,故,,,两式相减得到:,整理得到:,故.20、(1)为棱中点(2)【解析】(1)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,设,其中,利用空间向量法可得出关于的方程,结合求出的值,即可得出点的位置;(2)利用空间向量法可求得点到平面的距离【小问1详解】解:因为平面,底面为正方形,以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,则、、、、,设,其中,则,设平面的法向量为,,,由,取,可得,由题意可得,整理可得,因为,解得,因此,点为棱的中点.【小问2详解】解:由(1)知为棱中点,即,则,又,设平面的法向量为,由,取,可得,因为,所以,点到平面的距离为.21、(1)证明见解析;bn=2n(2)证明见解析【解析】(1)由递推关系式转化为等比数列即可求解;(2)由(1)求出,再用裂项相消法求和后就可以证明不等式.【小问1详解】由an+1=2an+1可得所以{bn}是以首项,公比为2的等比数列所以.【小问2详解】易得于是所以因为,所以.22、(1),;(2)过,.【解析】(1)根据两圆内切和外切的性质,结合双曲线的定义进行求解即可;(2)设出直线l的方程与双曲线的方程联立,利用一元二次方程根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论