版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省齐市地区普高联谊校2025届高一上数学期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则有()A.最大值 B.最小值C.最大值2 D.最小值22.用函数表示函数和中的较大者,记为:,若,,则的大致图像为()A. B.C. D.3.y=sin(2x-)-sin2x的一个单调递增区间是A. B.C. D.4.一个正三棱柱的三视图如图所示,则这个三棱柱的表面积为()A. B.C. D.5.某人围一个面积为32m2的矩形院子,一面靠旧墙,其它三面墙要新建(其平面示意图如下),墙高3m,新墙的造价为1000元/m2,则当A.9 B.8C.16 D.646.已知直线,圆.点为直线上的动点,过点作圆的切线,切点分别为.当四边形面积最小时,直线方程是()A. B.C. D.7.已知函数在上是增函数,则实数的取值范围是()A. B.C. D.8.表示不超过x的最大整数,例如,.若是函数的零点,则()A.1 B.2C.3 D.49.已知为三角形的内角,且,则()A. B.C. D.10.如图,四面体ABCD中,CD=4,AB=2,F分别是AC,BD的中点,若EF⊥AB,则EF与CD所成的角的大小是()A.30° B.45°C.60° D.90°二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则的最小值为___________12.已知函数是定义在的偶函数,且在区间上单调递减,若实数满足,则实数的取值范围是__________13.已知,则的值为________14.已知圆柱的底面半径为,高为2,若该圆柱的两个底面的圆周都在一个球面上,则这个球的表面积为______15.的解集为_____________________________________16.不等式的解集是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,在区间上有最大值,最小值,设函数.(1)求的值;(2)不等式在上恒成立,求实数的取值范围;(3)方程有三个不同的实数解,求实数的取值范围.18.已知集合,.(1)当时,求,;(2)若,且“”是“”的充分不必要条件,求实数的取值范围.19.已知函数.(1)求的定义域和的值;(2)当时,求,的值.20.已知函数的一系列对应值如下表:(1)根据表格提供的数据求函数的一个解析式;(2)根据(1)的结果,若函数周期为,当时,方程恰有两个不同的解,求实数的取值范围.21.已知定义域为的函数是奇函数.(1)求的值;(2)判断函数单调性(只写出结论即可);(3)若对任意的不等式恒成立,求实数的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】构造基本不等式即可得结果.【详解】∵,∴,∴,当且仅当,即时,等号成立,即有最小值2.故选:D.【点睛】本题主要考查通过构造基本不等式求最值,属于基础题.2、A【解析】利用特殊值确定正确选项.【详解】依题意,,排除CD选项.,排除B选项.所以A选项正确.故选:A3、B【解析】,由,得,,时,为,故选B4、D【解析】由三视图可知,该正三棱柱的底面是边长为2cm的正三角形,高为2cm,根据面积公式计算可得结果.【详解】正三棱柱如图,有,,三棱柱的表面积为.故选:D【点睛】本题考查了根据三视图求表面积,考查了正三棱柱结构特征,属于基础题.5、B【解析】由题设总造价为y=3000(x+64x),应用基本不等式求最小值,并求出等号成立时的【详解】由题设,总造价y=1000×3×(x+2×32当且仅当x=8时等号成立,即x=8时总造价最低.故选:B.6、B【解析】求得点C到直线l的距离d,根据,等号成立时,求得点P,进而求得过的圆的方程,与已知圆的方程联立求解.【详解】设点C到直线l的距离为,由,此时,,方程为,即,与直线联立得,因为共圆,其圆心为,半径为,圆的方程为,与联立,化简整理得,答案:B7、A【解析】先考虑函数在上是增函数,再利用复合函数的单调性得出求解即可.【详解】设函数在上是增函数,解得故选:A【点睛】本题主要考查了由复合函数的单调性求参数范围,属于中档题.8、B【解析】利用零点存在定理得到零点所在区间求解.【详解】因为函数在定义域上连续的增函数,且,又∵是函数的零点,∴,所以,故选:B.9、A【解析】根据同角三角函数的基本关系,运用“弦化切”求解即可.【详解】计算得,所以,,从而可计算的,,,选项A正确,选项BCD错误.故选:A.10、A【解析】取BC的中点G,连结FG,EG.先证明出(或其补角)即为EF与CD所成的角.在直角三角形△EFG中,利用正弦的定义即可求出的大小.【详解】取BC的中点G,连结FG,EG.由三角形中位线定理可得:AB∥EG,CD∥FG.所以(或其补角)即为EF与CD所成的角.因为EF⊥AB,则EF⊥EG.因为CD=4,AB=2,所以EG=1,FG=2,则△EFG是一个斜边FG=2,一条直角边EG=1的直角三角形,所以,因为为锐角,所以,即EF与CD所成的角为30°.故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据基本不等式,结合代数式的恒等变形进行求解即可.【详解】解:因为a>0,b>0,且4a+b=2,所以有:,当且仅当时取等号,即时取等号,故答案为:.12、【解析】先利用偶函数的性质将不等式化简为,再利用函数在上的单调性即可转化为,然后求得的范围.【详解】因为为R上偶函数,则,所以,所以,即,因为为上的减函数,,所以,解得,所以,的范围为.【点睛】1.函数值不等式的求法:(1)利用函数的奇偶性、特殊点函数值等性质将函数值不等式转化为与大小比较的形式:;(2)利用函数单调性将转化为自变量大小比较的形式,再求解不等式即可.
偶函数的性质:;奇函数性质:;
若在D上为增函数,对于任意,都有;若在D上为减函数,对于任意,都有.13、【解析】利用正弦、余弦、正切之间的商关系,分式的分子、分母同时除以即可求出分式的值.【详解】【点睛】本题考查了同角三角函数的平方和关系和商关系,考查了数学运算能力.14、【解析】直接利用圆柱的底面直径,高、球体的直径构成直角三角形其中为斜边,利用勾股定理求出的值,然后利用球体的表面积公式可得出答案【详解】设球的半径为,由圆柱的性质可得,圆柱的底面直径,高、球体的直径构成直角三角形其中为斜边,因为圆柱的底面半径为,高为2,所以,,因此,这个球的表面积为,故答案为【点睛】本题主要圆柱的几何性质,考查球体表面积的计算,意在考查空间想象能力以及对基础知识的理解与应用,属于中等题15、【解析】由题得,解不等式得不等式的解集.【详解】由题得,所以.所以不等式的解集为.故答案为【点睛】本题主要考查正切函数的图像和性质,考查三角不等式的解法,意在考查学生对这些知识的掌握水平和分析推理能力.16、或【解析】把分式不等式转化为,从而可解不等式.【详解】因为,所以,解得或,所以不等式的解集是或.故答案为:或.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)【解析】(1)利用二次函数闭区间上的最值,通过a与0的大小讨论,列出方程,即可求a,b的值;(2)转化不等式f(2x)﹣k•2x≥0,为k在一侧,另一侧利用换元法通过二次函数在x∈[﹣1,1]上恒成立,求出最值,即可求实数k的取值范围;(3)化简方程f(|2x﹣1|)+k(3)=0,转化为两个函数的图象的交点的个数,利用方程有三个不同的实数解,推出不等式然后求实数k的取值范围【详解】解:(1)g(x)=a(x﹣1)2+1+b﹣a,∵a>0,∴g(x)在[2,3]上为增函数,故,可得,⇔∴a=1,b=0(2)方程f(2x)﹣k•2x≥0化为2x2≥k•2x,k≤1令t,k≤t2﹣2t+1,∵x∈[﹣1,1],∴t,记φ(t)=t2﹣2t+1,∴φ(t)min=φ(1)=0,∴k≤0(3)由f(|2x﹣1|)+k(3)=0得|2x﹣1|(2+3k)=0,|2x﹣1|2﹣(2+3k)|2x﹣1|+(1+2k)=0,|2x﹣1|≠0,令|2x﹣1|=t,则方程化为t2﹣(2+3k)t+(1+2k)=0(t≠0),∵方程|2x﹣1|(2+3k)=0有三个不同的实数解,∴由t=|2x﹣1|的图象(如图)知,t2﹣(2+3k)t+(1+2k)=0有两个根t1、t2,且0<t1<1<t2或0<t1<1,t2=1,记φ(t)=t2﹣(2+3k)t+(1+2k),则或∴k>0【点睛】本题考查函数恒成立,二次函数闭区间上的最值的求法,考查转化思想与数形结合的思想18、(1),或;(2)【解析】(1)当时,求出集合,,由此能求出,;(2)推导出,的真子集,求出,,列出不等式组,能求出实数的取值范围【小问1详解】或,当时,,,或;【小问2详解】若,且“”是“”的充分不必要条件,,的真子集,,,,解得实数的取值范围是19、(1)定义域为,;(2),.【解析】(1)由根式、分式的性质求函数定义域,将自变量代入求即可.(2)根据a的范围,结合(1)的定义域判断所求函数值是否有意义,再将自变量代入求值即可.【小问1详解】由,则定义域为,且.【小问2详解】由,结合(1)知:,有意义.所以,.20、(1)(2)【解析】(1)根据表格提供的数据画出函数图象,求出、和、的值,写出的解析式即可;(2)由函数的最小正周期求出的值,再利用换元法,令,结合函数的图象求出方程恰有两个不同的解时的取值范围【详解】解:(1)绘制函数图象如图所示:设的最小正周期为,得.由得又解得,令,即,,据此可得:,又,令可得所以函数的解析式为(2)因为函数的周期为,又,所以令,因为,所以在上有两个不同的解,等价于函数与的图象有两个不同的交点,,所以方程在时恰好有两个不同的解的条件是,即实数的取值范围是【点睛】本题考查了三角函数的图象与性质的应用问题,也考查了函数与方程的应用问题,属于中档题21、(1),;(2)见解析;(3).【解析】(1)根据函数奇偶性得,,解得的值;最后代入验证,(2)可举例比较大小确定单调性,(3)根据函数奇偶性与单调性将不等式化简为,再根据恒成立转化为对应函数最值问题,最后根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 渠道总监合同范本
- 苏酒经销协议书
- 苗木补偿协议书
- 葡萄转让协议书
- 融创认购协议书
- 视频直播协议书
- 设备改造协议书
- 设施租赁协议书
- 评审委托协议书
- 请求支援协议书
- 西安市2024陕西西安市专职消防员管理中心招聘事业编制人员笔试历年参考题库典型考点附带答案详解(3卷合一)
- 吉安市农业农村发展集团有限公司及下属子公司2025年第二批面向社会公开招聘备考题库有答案详解
- 文冠果整形修剪课件
- 2025年盐城港控股招聘面试题库及答案
- 2026年益阳医学高等专科学校单招职业技能测试题库附答案
- 国家开放大学《商务英语4》期末考试精准题库
- 2025秋季《中华民族共同体概论》期末综合考试-国开(XJ)-参考资料
- 机械通气患者误吸预防及管理规范
- 2025年应急环境监测车行业分析报告及未来发展趋势预测
- AI生成时代虚拟生产力与生产关系变革
- 船舶进出港调度智能化方案
评论
0/150
提交评论