




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024—2025学年第一学期11月高三期中考试数学考试说明:1.本试卷共150分.考试时间120分钟.2.请将各题答案填在答题卡上.一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数的定义域为()A. B.C. D.2.已知平面向量,且∥,则()A. B. C. D.13.已知,若,则()A. B. C. D.4.已知,则()A. B. C. D.5.已知函数(其中,,)的部分图象如图所示,有以下结论:① ②函数为偶函数③ ④在上单调递增所有正确结论的序号是()A.①②④ B.①②③ C.②③④ D.①③④6.若函数在(1,3)上不单调,则实数的取值范围是()A. B. C. D.7.将函数的图象向右平移个单位长度后得到函数的图象,且函数是奇函数,则的最小值是()A. B. C. D.18.在锐角△中,、、分别是角、、所对的边,已知且,则的取值范围为()A. B. C. D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求。全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知下列函数中,最小正周期为的是()A. B. C. D.10.在△中,,为线段上一点,且有,则下列命题正确的是()A. B. C.的最大值为 D.的最小值为911.过点(2,)可以作两条直线与曲线相切,则实数的可能取值为()A. B. C. D.三、填空题:本题共3小题,每小题5分,共15分.12.已知复数(为虚数单位),若是纯虚数,则实数________.13.已知平面向量,,则在上的投影向量为________(结果用坐标表示)14.在等边三角形的三边上各取一点,满足,,°,则三角形的面积的最大值是________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本题满分13分)已知向量,满足.(1)求向量与夹角的余弦值;(2)求的值.16.(本题满分15分)(1)已知都是锐角,若,求的值;(2)已知,求的值.17.(本题满分15分)设函数.(1)当时,求函数的单调区间;(2)若函数有两个极值点,且,求的最小值.18.(本题满分17分)△的内角的对边分别为,已知.(1)求角的大小;(2)若是△边上的中线,且,求△面积的最大值.19.(本题满分17分)已知为坐标原点,对于函数,称向量为函数的相伴特征向量,同时称函数为向量的相伴函数.(1)记向量的相伴函数为,若当且时,求的值;(2)设,试求函数的相伴特征向量,并求出与同向的单位向量;(3)已知为函数的相伴特征向量,若在△中,,,若点为该△的外心,求的最大值.2024-2025学年第一学期11月高三期中考试数学答案1.D2.D3.A4.D5.B6.A7.C8.C9.ABD10.AD11.ABD12.13.14.15.【解析】(1)设与的夹角为,因为,所以,又,所以,所以所以向量与夹角的余弦值为;(2)由,所以.16.【解析】(1)∵已知、都是锐角,且,∴.∵,∴,∴.(2)因为,所以,即,所以,又,所以,故,故,故,所以,所以,,故17.【解析】(1),则定义域为(0,),当时,,令,解得或,令,解得,所以的单调递增区间为,单调递减区间为(2)∵定义域为,由(1)可知当时有两个极值点等价于在上有两个不等实根,∴,∴∴设,则,∴在上单调递减,∴,即,∴的最小值为18.【解析】(1)在△中,由,根据正弦定理可得因为为△的内角可知,,且,所以,即因为为△的内角,,故;所以,即(2)由题知是边的中线,所以.两边平方得:又,故,当且仅当时等号成立.所以,所以△面积的最大值为19.【解析】(1)根据题意知,向量的相伴函数为当时,,又,则,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025三明市三元区列西街道社区工作者考试真题
- 四川省苍溪中学2024-2025学年高二下学期4月第一学段考试历史试题(原卷版)
- 2025年项目部管理人员安全培训考试试题答案完整
- 2024-2025公司、项目部、各个班组三级安全培训考试试题及一套参考答案
- 2025公司及项目部安全培训考试试题及答案黄金题型
- 2024-2025工厂职工安全培训考试试题及答案审定
- 2025项目部管理人员安全培训考试试题【预热题】
- 25年企业安全管理人员安全培训考试试题【考点梳理】
- 2025管理人员岗前安全培训考试试题及参考答案(突破训练)
- 2025公司安全管理人员安全培训考试试题及完整答案1套
- 2024年四川省南充市中考生物试卷真题(含官方答案)
- 劳动教育智慧树知到期末考试答案章节答案2024年华中师范大学
- 成人高尿酸血症与痛风食养指南(2024年版)
- 2024年首都机场集团招聘笔试参考题库附带答案详解
- 2023年山东省专升本考试高等数学Ⅲ试题和答案
- 抗血栓药物临床应用与案例分析课件
- 吉林省地方教材家乡小学二年级下册家乡教案
- 决策树在饲料技术推广中的应用研究
- 儿童长期卧床的护理
- 投标书细节美化教程
- 《小儿支气管肺炎》课件
评论
0/150
提交评论