版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
...wd......wd......wd...综合评价评价是人类社会中一项经常性的、极重要的认识活动,是决策中的根基性工作。在实际问题的解决过程中,经常遇到有关综合评价问题,如医疗质量的综合评价问题和环境质量的综合评价等。它是根据一个复杂系统同时受到多种因素影响的特点,在综合考察多个有关因素时,依据多个有关指标对复杂系统进展总评价的方法;综合评价的要点:〔1〕有多个评价指标,这些指标是可测量的或可量化的;〔2〕有一个或多个评价对象,这些对象可以是人、单位、方案、标书科研成果等;〔3〕根据多指标信息计算一个综合指标,把多维空间问题简化为一维空间问题中解决,可以依据综合指标值大小对评价对象优劣程度进展排序。综合评价的一般步骤1.根据评价目的选择恰当的评价指标,这些指标具有很好的代表性、区别性强,而且往往可以测量,筛选评价指标主要依据专业知识,即根据有关的专业理论和实践,来分析各评价指标对结果的影响,挑选那些代表性、确定性好,有一定区别能力又互相独立的指标组成评价指标体系。2.根据评价目的,确定诸评价指标在对某事物评价中的相对重要性,或各指标的权重;3.合理确定各单个指标的评价等级及其界限;4.根据评价目的,数据特征,选择适当的综合评价方法,并根据已掌握的历史资料,建设综合评价模型;5.确定多指标综合评价的等级数量界限,在对同类事物综合评价的应用实践中,对选用的评价模型进展考察,并不断修改补充,使之具有一定的科学性、实用性与先进性,然后推广应用。目前,综合评价有许多不同的方法,如综合指数法、TOPSIS法、层次分析法、RSR法、模糊综合评价法、灰色系统法等,这些方法各具特色,各有利弊,由于受多方面因素影响,若何使评价法更为准确和科学,是人们不断研究的课题。下面仅介绍综合评价的TOPSIS法、RSR法和层次分析法的基本原理及简单的应用。8.1TOPSIS法〔逼近理想解排序法〕Topsis法是系统工程中有限方案多目标决策分析的一种常用方法。是基于归一化后的原始数据矩阵,找出有限方案中的最优方案和最劣方案〔分别用最优向量和最劣向量表示〕,然后分别计算诸评价对象与最优方案和最劣方案的距离,获得各评价对象与最优方案的相对接近程度,以此作为评价优劣的依据。8.1.1TOPSIS法是TechniqueforOrderPreferencebySimilaritytoIdealSolution的缩写,即逼近于理想解的技术,它是一种多目标决策方法。方法的基本思路是定义决策问题的理想解和负理想解,然后在可行方案中找到一个方案,使其距理想解的距离最近,而距负理想解的距离最远。
理想解一般是设想最好的方案,它所对应的各个属性至少到达各个方案中的最好值;负理想解是假定最坏的方案,其对应的各个属性至少不优于各个方案中的最劣值。方案排队的决策规则,是把实际可行解和理想解与负理想解作对比,假设某个可行解最靠近理想解,同时又最远离负理想解,则此解是方案集的满意解。8.1采用相对接近测度。设决策问题有m个目标〔〕,n个可行解〔〕;并设该问题的标准化加权目标的理想解是Z*,其中,那么用欧几里得范数作为距离的测度,则从任意可行解到的距离为:i=1,…,n,(8.1)式中,Zij为第j个目标对第i个方案〔解〕的标准化加权值。
同理,设=为问题的标准化加权目标的负理想解,则任意可行解到负理想解之间的距离为:i=1,…,n,(8.2)那么,某一可行解对于理想解的相对接近度定义为:0≤Ci≤1,i=1,…,n,(8.3)于是,假设是理想解,则相应的Ci=1;假设是负理想解,则相应的Ci=0。愈靠近理想解,Ci愈接近于1;反之,愈接近负理想解,Ci愈接近于0。那么,可以对Ci进展排队,以求出满意解。8.1第一步:设某一决策问题,其决策矩阵为A.由A可以构成标准化的决策矩阵Z′,其元素为Z′ij,且有(8.4)式中,fij由决策矩阵给出。(8.5)第二步:构造标准化的加权决策矩阵Z,其元素ZijZij=WjZ′iji=1,…,n;j=1,…,m(8.6)Wj为第j个目标的权。第三步:确定理想解和负理想解。如果断策矩阵Z中元素Zij值越大表示方案越好,则(8.7)(8.8)第四步:计算每个方案到理想点的距离Si和到负理想点的距离S-i。
第五步:按式(8.3)计算Ci,并按每个方案的相对接近度Ci的大小排序,找出满意解。多目标综合评价排序的方法较多,各有其应用价值。在诸多的评价方法中,TOPSIS法对原始数据的信息利用最为充分,其结果能准确的反映各评价方案之间的差距,TOPSIS对数据分布及样本含量,指标多少没有严格的限制,数据计算亦简单易行。不仅适合小样本资料,也适用于多评价对象、多指标的大样本资料。利用TOPSIS法进展综合评价,可得出良好的可比性评价排序结果。8.1.41、TOPSIS法在医疗质量综合评价中的应用试根据表8.1数据,采用Topsis法对某市人民医院1995~1997年的医疗质量进展综合评价。表8.1某市人民医院1995~1997年的医疗质量年度床位周转次数床位周转率〔%〕平均住院日出入院诊断符合率〔%〕手术前后诊断符合率〔%〕三日确诊率〔%〕治愈好转率〔%〕病死率〔%〕危重病人抢救成功率〔%〕院内感染率〔%〕199520.97113.8118.7399.4299.8097.2896.082.5794.534.60199621.41116.1218.3999.3299.1497.0095.652.7295.325.99199719.13102.8517.4499.4999.1196.2096.502.0296.224.79在原始数据指标中,平均住院日、病死率、院内感染率三个指标的数值越低越好,这三个指标称为低优指标;其它指标数值越高越好,称为高优指标。是低优指标的可转化为高优指标,其方法为是绝对数低优指标可使用倒数法〔〕,是相对数低优指标,可使用差值法〔〕。这里,平均住院日采用倒数转化,病死率、院内感染率采用差值转化。转化后数据见表8.2。表8.2转化指标值年度床位周转次数床位周转率〔%〕平均住院日出入院诊断符合率〔%〕手术前后诊断符合率〔%〕三日确诊率〔%〕治愈好转率〔%〕病死率〔%〕危重病人抢救成功率〔%〕院内感染率〔%〕199520.97113.815.3499.4299.8097.2896.0897.4394.5395.40199621.41116.125.4499.3299.1497.0095.6597.2895.3294.01199719.13102.855.7399.4999.1196.2096.5097.9896.2295.21根据表8.2数据,利用公式〔8.4〕进展归一化处理,得归一化矩阵值,如表8.3。〔8.9〕例如计算1995年床位周转次数归一化值,由公式〔8.9〕得:其余归一化数值以此类推。表8.3归一化矩阵值年度床位周转次数床位周转率平均住院日出入院诊断符合率手术前后诊断符合率三日确诊率治愈好转率病死率危重病人抢救成功率院内感染率19950.5900.5920.5600.5770.5800.5800.5770.5770.5720.58119960.6020.6040.5700.5770.5760.5780.5750.5760.5770.57219970.5380.5350.6010.5780.5760.5740.5800.5800.5830.579由式〔8.7〕和式〔8.8〕得最优方案和最劣方案:〔8.10〕〔8.11〕由式〔8.10〕、〔8.11〕和式〔8.1〕、〔8.2〕计算各年度和,见表8.4。例如计算1997年和:〔8.12〕〔8.13〕其余各年依次类推。由式〔8.3〕计算各年度,见表8.4。例如计算1997年:〔8.14〕其余各年以次类推。表8.4不同年度指标值与最优值的相对接近程度及排序结果年份排序结果19950.0450.0780.634219960.0340.0950.736119970.0940.0440.3193由表8.4的排序结果可知1996年医疗质量最好。2TOPSIS法在环境质量综合评价中的应用实例在环境质量评价中,把每个样品的监测值和每级的标准值,分别看作TOPSIS法的决策方案,由TOPSIS法可以得到每个样品和每级标准值的Ci值,对Ci值大小排序,便可以得到每个样品的综合质量及不同样品间进展综合质量优劣对比。
表8.5列出所选的参评要素和所确定的评判等级及其代表值表8.5某海湾沿岸海水侵染程度分级表
参评要素分级Ⅰ级
(无或很轻侵染)Ⅱ级
(轻度侵染)Ⅲ级
(较严重侵染)Ⅳ级
(严重侵染)氯离子(mg/l)1004008002200矿化度(mg/l)500150025003500溴离子(mg/l)09.00rHCO3/rCl1.000.310.140.02纳吸附比1.402.604.5015.50测得111#和112#水样的各参评要素值如表8.6。表8.6111#和112#水样监测值样品号要素氯离子
(mg/l)矿化度
(mg/l)溴离子
(mg/l)rHCO3/rCl纳吸附比111#134.71542.1500.8821.576112#152.447671.366取海水侵染Ⅰ~Ⅳ级标准值和111#及112#样品监测值构成TOPSIS法中的决策矩阵A,那么由式(8.4)算出A的标准化矩阵Z′因在制定海水侵染分级标准时,各因子的重要性已隐含在分级标准值中,因此,本文由标准值来确定权重,其计算式如下:(8.15)式中,Wi为因子的权重;为标准分级数,在本例中;为因子的第级标准值;为因子的第级标准值。
式(8.15)适用于低优指标型因子,在本例中如氯离子、矿化度、溴离子、纳吸附比等,权重计算时用SⅢ/SI;而对高优指标型因子如rHCO3/rHCl,计算时用SⅡ/SⅣ。
通过计算得权重向量WT={0.1980.11990.23980.37170.0767}
由式(8.6)得加权后的标准化矩阵Z为由式(8.7),式(8.8)得={0.17680.08980.22880.25200.0719}-={0.00810.012800.00410.0064}最后,由式(8.1),式(8.2)和式(8.3)计算,和Ci值(表8.7)。表8.7,和Ci值表ⅠⅡⅢⅣ111#112#0.05350.19620.24550.39050.07670.00870.35500.26310.209300.34530.38470.86900.57280.460200.81820.9779把Ci排序得C112>CⅠ>C111>CⅡ>CⅢ>CⅣ于是可知:112#样品综合质量优于111#样品综合质量,112#样品质量优于I级标准最低界限值,为I级;111#样品质量介于I级和Ⅱ级最低界限值之间,属于Ⅱ级。因此,111#样品为轻度侵染,112#样品为无或很轻污染。由监测值也可以知道:111#有4个因子到达Ⅱ级,1个因子到达I级;112#有2个因子到达Ⅱ级(接近I级),3个因子到达I级。因此,本方法评价结果符合客观实际。8.1.5TOPSIS法是一种多目标决策方法,适用于处理多目标决策问题。本文提出TOPSIS法应用于环境质量综合评价中,取得较好的效果,与其他方法对比,具有以下优点:
1、与环境标准巧妙结合起来,不仅能确定各评价对象所属的级别,还能进展不同评价对象间质量的优劣对比。
2、TOPSIS法原理简单,能同时进展多个对象评价,计算快捷,结果分辨率高、评价客观,具有较好的合理性和适用性,实用价值较高。
TOPSIS法的缺点是只能反映各评价对象内部的相对接近度,并不能反映与理想的最优方案的相对接近程度。8.2秩和比法秩和比法是我国统计学家田凤调教授于1988年提出的一种新的综合评价方法,它是利用秩和比RSR〔Rank-sumratio〕进展统计分析的一种方法,该法在医疗卫生等领域的多指标综合评价、统计预测预报、统计质量控制等方面已得到广泛的应用。秩和比是一个内涵较为丰富的综合性指标,它是指行〔或列〕秩次的平均值,是一个非参数统计量,具有0~1连续变量的特征,近年来秩和比统计方法不断完善和充实。8.2.11、分析原理秩和比是一种将多项指标综合成一个具有0~1连续变量特征的统计量,也可看成0~100的计分。多用于现成统计资料的再分析。不管所分析的问题是什么,计算的RSR越大越好。为此,在编秩时要区分高优指标和低优指标,有时还要引进不分上下的情况。例如,评价预期寿命、受检率、合格率等可视为高优指标;发病率、病死率、超标率为低优指标。在疗效评价中,不变率、微效率等可看作不分上下的指标。指标值一样时应编以平均秩次。秩和比综合评价法基本原理是在一个n行m列矩阵中,通过秩转换,获得无量纲统计量RSR;在此根基上,运用参数统计分析的概念与方法,研究RSR的分布;以RSR值对评价对象的优劣直接排序或分档排序,从而对评价对象作出综合评价。2、分析步骤①编秩:将n个评价对象的m个评价指标列成n行m列的原始数据表。编出每个指标各评价对象的秩,其中高优指标从小到大编秩,低优指标从大到小编秩,同一指标数据一样者编平均秩。②计算秩和比〔RSR〕:根据公式计算,式中i=1,2,…,n;为第i行第j列元素的秩,最小RSR=1/n,最大RSR=1。当各评价指标的权重不同时,计算加权秩和比〔WRSR〕,其计算公式为,Wj为第j个评价指标的权重,∑Wj=1。通过秩和比〔RSR〕值的大小,就可对评价对象进展综合排序,这种利用RSR综合指标进展排序的方法称为直接排序。但是在通常情况下还需要对评价对象进展分档,特别是当评价对象很多时,如几十个或几百个评价对象,这时更需要进展分档排序,由此应首先找出RSR的分布。③计算概率单位〔Probit〕:将RSR〔或WRSR〕值由小到大排成一列,值一样的作为一组,编制RSR〔或WRSR〕频率分布表,列出各组频数f,计算各组累计频数∑f;确定各组RSR〔或WRSR〕的秩次范围R和平均秩次;计算累计频率p=AR/n;将百分率p转换为概率单位Probit,Probit为百分率p对应的标准正态离差u加5。④计算直线回归方程:以累计频率所对应的概率单位Probit为自变量,以RSR〔或WRSR〕值为因变量,计算直线回归方程,即RSR(WRSR)=a+b×Probit。⑤分档排序:根据标准正态离差μ分档,分档数目可根据试算结果灵活掌握,最正确分档应该是各档方差一致,相差具有显著性,一般分3-5档,下面是常用分档数对应的百分位数及概率单位见表8.8。表8.8常用分档数及对应概率单位依据各分档情况下概率单位Probit值,按照回归方程推算所对应的RSR〔或WRSR〕估计值对评价对象进展分档排序。具体的分档数根据实际情况决定。8.2.2秩和比法在对某病区护士某医院对护士考核有4个指标,它们分别是:业务考核成绩〔〕、操作考核结果〔〕、科内测评〔〕和工作量考核〔〕;下表8.9是某病区8名护士的考核结果:表8.9某病区8名护士的考核结果待评对象〔n〕护士甲86优-100233.9护士乙92良98.2192.9护士丙88良99.1311.1护士丁72良95.5274.9护士戊70优97.3263.6护士己94优100182.3护士庚84良91.97220.6护士辛50良91.97182.0利用秩和比综合评价法对其进展综合评价。根据秩和比综合评价法的评价步骤,第一步分别对要评价的各项指标进展编秩,由于对护士考核的4个指标都是高优指标,所以对要评价的各项指标进展编秩如表8.10:表8.10评价的各项指标编秩待评对象〔n〕护士甲86〔5〕优-〔6〕100〔7.5〕233.9〔5〕护士乙92〔7〕良〔3〕98.2〔5〕192.9〔3〕护士丙88〔6〕良〔3〕99.1〔6〕311.1〔8〕护士丁72〔3〕良〔3〕95.5〔3〕274.9〔7〕护士戊70〔2〕优〔7.5〕97.3〔4〕263.6〔6〕护士己94〔8〕优〔7.5〕100〔7.5〕182.3〔2〕护士庚84〔4〕良〔3〕91.97〔1.5〕220.6〔4〕护士辛50〔1〕良〔3〕91.97〔1.5〕182.0〔1〕第二步,计算各指标的秩和比〔RSR〕其中m为指标个数,n为分组数,为各指标的秩次,RSR值即为多指标的平均秩次,其值越大越优。各护士4项护理考核指标编秩及RSR值如表8.11表8.11各护士4项护理考核指标编秩及RSR值待评对象〔n〕RSR护士甲86〔5〕优-〔6〕100〔7.5〕233.9〔5〕0.7344护士乙92〔7〕良〔3〕98.2〔5〕192.9〔3〕0.5313护士丙88〔6〕良〔3〕99.1〔6〕311.1〔8〕0.7188护士丁72〔3〕良〔3〕95.5〔3〕274.9〔7〕0.5000护士戊70〔2〕优〔7.5〕97.3〔4〕263.6〔6〕0.6094护士己94〔8〕优〔7.5〕100〔7.5〕182.3〔2〕0.7813护士庚84〔4〕良〔3〕91.97〔1.5〕220.6〔4〕0.3906护士辛50〔1〕良〔3〕91.97〔1.5〕182.0〔1〕0.2031如果将8名护士进展排序,则可根据8名护士的秩和比〔RSR〕,按由大到小排列就可得到8名护士由好到差的所有排序;如果要将8名护士分成几档,则还需继续进展以下工作。第三步,确定RSR的分布将各指标的RSR值由小到大进展排列,计算向下累计频率,查《百分数与概率单位对照表》,求其所对应的概率单位值,见表8.12表8.12概率单位值RSRf累积频数Y0.203111112.53.81970.390612225.54.32550.500013337.54.68140.531314450.55.00000.609415562.55.31860.718816675.05.67450.734417787.56.15030.78131886.8663其中数据是利用估计的。第四步,求回归方程:RSR=A+BY将概率单位值Y作为自变量,秩和比RSR作为因变量,经相关和回归分析,因变量RSR与自变量概率单位值Y具有线性相关〔r=0.9528〕,线性回归方程为:RSR=0.1877Y-0.4232,经F检验,F=59.078,P=0.0002,这说明所求线性回归方程具有统计意义。第五步,将8名护士进展分档,分多少档根据评价对象具体要求确定,如果将8名护士分为优良差三档,根据统计学家田凤调教授提供的一个分档标准,分档如下表8.13:表8.138名护士分档表等级Y分档差4以下<0.3276护士辛良4~0.3276~护士乙护士丁护士戊护士庚优6~0.703~护士甲护士丙护士己说明〔1〕上例评估护士的四个指标都是上优指标,所以指标越高秩次值越高,如果有些指标是下优指标,则指标越低秩次值越高。〔2〕上例评估护士的四个指标都认为同等重要,可以认为具有一样的权重。如果认为评估护士的四个指标重要不同,则认为四个指标是具有不同的权重,例如在四个评估指标中,如果业务考核成绩占40%、操作考核结果成绩占30%、科内测评成绩占10%〔〕、工作量考核成绩占20%,则护士甲的RSR值计算为:护士甲的RSR=[40%5+30%6+10%7.5+20%5]/8=0.69375类似可得到其他护士的RSR值,依据以上步骤就可得到护士的加权秩和比排序分档。秩和比评价法的优点是是以非参数法为根基,对指标的选择无特殊要求,适于各种评价对象;此方法计算用的数值是秩次,可以消除异常值的干扰,合理解决指标值为零时在统计处理中的困惑,它融合了参数分析的方法,结果比单纯采用非参数法更为准确,既可以直接排序,又可以分档排序,使用范围广泛,且不仅可以解决多指标的综合评价,也可用于统计测报与质量控制中。但是秩和比评价法的缺点是排序的主要依据是利用原始数据的秩次,最终算得的RSR值反映的是综合秩次的差距,而与原始数据的顺位间的差距程度大小无关,这样在指标转化为秩次是会失去一些原始数据的信息,如原始数据的大小差异等。另外,当RSR值实际上不满足正态分布时,分档归类的结果与实际情况会有偏草差,且只能答复分级程度是否有差异,不能进一步答复具体的差异情况。为了解决这个问题,一些学者对秩和比评价法的进展了改良,提出了非整秩次秩和比法,此方法用类似于线性插值的方式对指标值进展编秩,以改良RSR法编秩方法的缺乏,所编秩次与原指标值之间存在定量的线性对应关系,从而抑制了RSR法秩次化时易损失原指标值定量信息的缺点。非整秩次秩和比法是对RSR法的编秩方法作了一些改良,用类似于线性插值的方式进展编秩。所编秩次除最小和最大指标值必为整数外,其余基本上为非整数,故将改良后的RSR法称为“非整秩次秩和比法〞,简称为非整秩次RSR法。非整秩次RSR法的编秩方法:对于高优指标:对于低优指标:
式中R为秩次,n为样本数,X为原始指标值,、分别为最小、最大的原始指标值。
对于不分上下指标,不管指标值的大小,秩次一律为:R=。偏(或稍)高优指标、偏(或稍)低优指标的秩次公式同RSR法。应用实例某市医院1983~1992年工作质量统计指标及其非整秩次、权重系数见表8.14。求出RSR、wRSR与概率单位的相关系数及回归直线方程为:=0.02529+0.1085yγ=0.9553
=-0.1012+0.1316yγ=0.9434进展最正确分档,结果见表8.15。表8.14某市人民医院1983~1992年工作质量非整秩次RSR评分年度治愈率*病死率△周转率*平均病床工作日*病床使用率*平均住院日△RSRWRSR198375.2(4.36)3.5(1)38.2(8.07)370.1(6.91)101.5(9.69)10.0(4)0.56720.4165198476.1(5.34)3.3(1.9)36.7(6.69)369.6(6.86)101(9.43)10.3(1.75)0.53280.4062198580.4(10)2.7(4.6)30.5(1)309.7(1)84.8(1)10.0(4)0.36000.3819198677.8(7.18)2.7(4.6)36.3(6.33)370.1(6.91)101.4(9.64)10.2(2.5)0.61930.5459198775.9(5.12)2.3(6.4)38.9(8.71)369.4(6.84)101.2(9.53)9.6(7)0.72670.7032198874.3(3.39)2.4(5.95)36.7(6.69)335.5(3.52)91.9(4.69)9.2(10)0.57070.6087198974.6(3.71)2.2(6.85)37.5(7.43)356.2(5.55)97.6(7.66)9.3(9.25)0.67420.6966199072.1(1)1.8(8.65)40.3(10)401.7(10)101.1(9.48)10.0(4)0.71880.7594199172.8(1.76)1.9(8.2)37.1(7.06)372.8(7.17)102.1(10)10.0(4)0.63650.6856199272.1(1)1.5(10)33.2(3.48)358.1(5.73)97.8(7.76)10.4(1)0.48280.6225权重系数0.0930.4180.1320.1000.0980.159注:*高优指标,△低优指标;()中数字为秩次表8.15本法与RSR法排序与分档的对比方法排序与分档好中差未加权RSR法1987年,1990年,1991年1983年,1989年,1986年,1988年,
1984年,1992年,1985年—本法1987年,1990年1989年,1991年,1986年,1988年,
1983年,1984年,
1992年1985年加权RSR法1990年,1991年,1987年1989年,1992年,
1988年,1986年,1983年1985年,1984年本法1990年,1987年,1989年1991年,1992年,
1988年,1986年1983年,1984年,1985年对RSRW的排序与分档进展方差一致性检验(Bartlett检验):χ2=2.8848,P>0.05,方差一致。
方差分析:F=43.2921,P<0.01,各档差异有显著性意义。
Newman-Keulsq多重对比:好>中>差,均具有显著性意义。在本法编秩中,对于高优指标,最小的指标值编为1,最大的指标值编为n(此点与RSR法一样),但其余指标值由小到大分别编为1与n之间的线性递增的非整秩次。所编秩次与原指标值之间存在定量的线性对应关系,即原指标值被定量地转换为秩次,而不是简单的等级化,从而防止了秩次化后原指标值定量信息的损失。低优指标的编秩方法一样,但大小方向相反。
与RSR法对比,非整秩次RSR法的缺乏是不能直观地列出秩次,而需经过计算得出,故运算比RSR法多一步。但所增加一点运算换取更准确、更客观的评价结果是值得的。8.3层次分析法;人们在实际问题中常常会遇到各种各样的决策问题,如旅游地的选取问题,旅游者初次筛选几处旅游地,但每个旅游地的风光、所需费用、居住条件、饮食条件交通等各不一样,根据个人的条件和爱好等若何确定旅游地。再例如,某人准备选购一台电冰箱,他对市场上的6种不同类型的电冰箱进展了解后,在决定买那一款式是,往往不是直接进展对比,因为存在许多不可比的因素,而是选取一些中间指标进展考察。例如电冰箱的容量、制冷级别、价格、型式、耗电量、外界信誉、售后服务等。然后再考虑各种型号冰箱在上述各中间标准下的优劣排序。借助这种排序,最终作出选购决策。在决策时,由于6种电冰箱对于每个中间标准的优劣排序一般是不一致的,因此,决策者首先要对这7个标准的重要度作一个估计,给出一种排序,然后把6种冰箱分别对每一个标准的排序权重找出来,最后把这些信息数据综合,得到针对总目标即购置电冰箱的排序权重。象这样类似的问题很多,其特点是这类问题所往往涉及到经济、社会、人文等方面的因素。在作对比、判别、评价、决策时这些因素的重要性、影响力或者优先程度往往难以量化,人的主观选择会起着相当重要的作用,这就给用一般的数学方法解决问题带来本质上的困难。层次分析法〔analyticalhierarchyprocess,AHP〕是美国匹兹堡大学教授撒泰〔A.L.Saaty〕于20世纪70年代提出的一种系统分析方法。它综合定性与定量分析,模拟人的决策思维过程,来对多因素复杂系统,特别是难以定量描述的社会系统进展分析。目前,AHP是分析多目标、多准则的复杂公共管理问题的有力工具。它具有思路清晰、方法简便、适用面广、系统性强等特点,便于普及推广,可成为人们工作和生活中思考问题、解决问题的一种方法。将AHP引入决策,是决策科学化的一大进步。它最适宜于解决那些难以完全用定量方法进展分析的公共决策问题。应用AHP解决问题的思路是,首先,把要解决的问题分层次系列化,将问题分解为不同的组成因素,按照因素之间的相互影响和隶属关系将其分层聚类组合,形成一个递阶的、有序的层次构造模型。然后,对模型中每一层次因素的相对重要性,依据人们对客观现实的判断给予定量表示,再利用数学方法确定每一层次全部因素相对重要性次序的权值。最后,通过综合计算各层因素相对重要性的权值,得到最低层〔方案层〕相当于最高层〔总目标〕的相当重要性次序的组合权值,以此作为评价和选择方案的依据。AHP将人们的思维过程和主观判断数学化,不仅简化了系统分析与计算工作,而且有助于决策者保持其思维过程和决策原则的一致性,对于那些难以全部量化处理的复杂的问题,能得到对比满意的决策结果。因此,它在能源政策分析、产业构造研究、科技成果评价、开展战略规划、人才考核评价以及开展目标分析等许多方面得到广泛的应用。下面介绍层次分析法的基本原理、步骤、计算方法、及其应用。8.3.1为了说明AHP的基本原理,首先分析下面这个简单的事实。假定我们n只西瓜的每只西瓜的重量分别为,,…,且总和为1,即。把这些西瓜两两对比〔相除〕,很容易得到表示n只西瓜相对重量关系的对比矩阵〔以后称之为判断矩阵〕:〔8.16〕显然=1,,,对于矩阵,如果满足关系〔〕,则称矩阵具有完全一致性。可以证明具有完全一致性的矩阵A=有以下性质:1〕A的转置亦是一致阵;2〕矩阵A的最大特征根,其余特征根均为零。3〕设是A对应的特征向量,则,。假设记,,则矩阵是完全一致的矩阵,且有AW===nW〔8.17〕即n是n只西瓜相对重量关系的判断矩阵A的一个特征根,每只西瓜的重量对应于矩阵A特征根为n的特征向量W的各个分量。很自然,我们会提出一个相反的问题,如果事先不知道每只西瓜的重量,也没有衡器去称量,我们如果能设法得到判断矩阵A〔对比每两只西瓜的重量是容易的〕,能否导出每只西瓜的重量呢显然是可以的,在判断矩阵具有完全一致的条件下,我们可以通过解特征值问题AW=W求出正规化特征向量〔即假设西瓜总重量为1〕,从而得到n只西瓜的相对重量。同样,对于复杂的社会公共管理问题,通过建设层次分析构造模型,构造出判断矩阵,利用特征值方法即可确定各种方案和措施的重要性排序权值,以供决策者参考。对于AHP,判断矩阵的一致性是十分重要的。此时矩阵的最大特征根,其余特征根均为零。在一般情况下,可以证明判断矩阵的最大特征根为单根,且。当判断矩阵具有满意的一致性时,最大的矩阵的特征值为n,其余特征根接近于0,这时,基于AHP得出的结论才基本合理。但由于客观事物的复杂性和人们认识上的多样性,要求判断矩阵都具有完全一致性是不可能的,但我们要求一定程度上的一致,因此对构造的判断矩阵需要进展一致性检验。8.3.2一、建设层次构造模型运用AHP进展系统分析,首先要将所包含的因素分组,每一组作为一个层次,把问题条理化、层次化,构造层次分析的构造模型。这些层次大体上可分为3类1、最高层:在这一层次中只有一个元素,一般是分析问题的预定目标或理想结果,因此又称目标层;2、中间层:这一层次包括了为实现目标所涉及的中间环节,它可由假设干个层次组成,包括所需要考虑的准则,子准则,因此又称为准则层;3、最底层:表示为实现目标可供选择的各种措施、决策、方案等,因此又称为措施层或方案层。层次分析构造中各项称为此构造模型中的元素,这里要注意,层次之间的支配关系不一定是完全的,即可以有元素〔非底层元素〕并不支配下一层次的所有元素而只支配其中局部元素。这种自上而下的支配关系所形成的层次构造,我们称之为递阶层次构造。递阶层次构造中的层次数与问题的复杂程度及分析的详尽程度有关,一般可不受限制。为了防止由于支配的元素过多而给两两对比判断带来困难,每层次中各元素所支配的元素一般地不要超过9个,假设多于9个时,可将该层次再划分为假设干子层。例如,大学毕业的选择问题,毕业生需要从收入、社会地位及开展时机方面考虑是否留校工作、读研究生、到某公司或当公务员,这些关系可以将其划分为如图8.1所示的层次构造模型。图8.1再如,国家综合实力对比的层次构造模型如图6.2:图6.2图中,最高层表示解决问题的目的,即应用AHP所要到达的目标;中间层表示采用某种措施和政策来实现预定目标所涉及的中间环节,一般又分为策略层、约束层、准则层等;最低层表示解决问题的措施或政策〔即方案〕。然后,用连线说明上一层因素与下一层的联系。如果某个因素与下一层所有因素均有联系,那么称这个因素与下一层存在完全层次关系。有时存在不完全层次关系,即某个因素只与下一层次的局部因素有联系。层次之间可以建设子层次。子层次附属于主层次的某个因素。它的因素与下一层次的因素有联系,但不形成独立层次,层次构造模型往往有构造模型表示。二、构造判断矩阵任何系统分析都以一定的信息为根基。AHP的信息根基主要是人们对每一层次各因素的相对重要性给出的判断,这些判断用数值表示出来,写成矩阵形式就是判断矩阵。判断矩阵是AHP工作的出发点,构造判断矩阵是AHP的关键一步。当上、下层之间关系被确定之后,需确定与上层某元素〔目标A或某个准则Z〕相联系的下层各元素在上层元素Z之中所占的比重。假定A层中因素Ak与下一层次中因素B1,B2,…,Bn有联系,则我们构造的判断矩阵如表8.16所示。表8.16判断距阵AkB1B2…BnB1B2Bnb11b21┇bn1b12b22┇bn2……┇…b1nb2n┇bnn表8.16中,bij是对于Ak而言,Bi对Bj的相对重要性的数值表示,判断矩阵表示针对上一层次某因素而言,本层次与之有关的各因素之间的相对重要性。填写判断矩阵的方法是:向填写人〔专家〕反复询问:针对判断矩阵的准则,其中两个元素两两对比哪个重要,重要多少。对重要性程度Saaty等人提出用1-9尺度赋值,见下表8.17表8.17重要性标度含义表重要性标度含义1表示两个元素相比,具有同等重要性3表示两个元素相比,前者比后者稍重要5表示两个元素相比,前者比后者明显重要7表示两个元素相比,前者比后者强烈重要9表示两个元素相比,前者比后者极端重要2,4,6,8表示上述判断的中间值倒数假设元素与元素j的重要性之比为,则元素j与元素的重要性之比为=设填写后的判断矩阵为,则判断矩阵具有如下性质:(1)0,(2)=,(3)=1根据上面性质,判断矩阵具有对称性,因此在填写时,通常先填写=1局部,然后再仅需判断及填写上三角形或下三角形的n(n-1)/2个元素就可以了。在特殊情况下,判断矩阵可以具有传递性,即满足等式:,当上式对判断矩阵所有元素都成立时,则该判断矩阵为一致性矩阵。采用1~9的比例标度的依据是:〔1〕心理学的实验说明,大多数人对不同事物在一样属性上差异的分辨能力在5~9级之间,采用1~9的标度反映了大多数人的判断能力;〔2〕大量的社会调查说明,1~9的比例标度早已为人们所熟悉和采用;〔3〕科学考察和实践说明,1~9的比例标度已完全能区分引起人们感觉差异的事物的各种属性。因此目前在层次分析法的应用中,大多数都采用尺度。当然,关于不同尺度的讨论一直存在着。三、层次单排序所谓层次单排序是指根据判断矩阵计算对于上一层某因素而言本层次与之有联系的因素的重要性次序的权值。它是本层次所有因素相对上一层而言的重要性进展排序的根基。层次单排序可以归结为计算判断矩阵的特征根和特征向量问题,即对判断矩阵B,计算满足BW=W〔8.18〕的特征根与特征向量。式中,为B的最大特征根;W为对应于的正规化特征向量;W的分量即是相应因素单排序的权值。为了检验矩阵的一致性,需要计算它的一致性指标CI,CI的定义为CI=〔8.19〕显然,当判断矩阵具有完全一致性时,CI=0。越大,CI越大,判断矩阵的一致性越差。注意到矩阵B的n个特征值之和恰好等于n,所以CI相当于除外其余n-1个特征根的平均值。为了检验判断矩阵是否具有满意的一致性,需要找出衡量矩阵B的一致性指标CI的标准,Saaty引入了随机一致性指标表8.18。表8.181~9矩阵的平均随机一致性指标阶数123456789RI0.000.000.580.901.121.241.321.411.45对于1阶、2阶判断矩阵,RI只是形式上的,按照我们对判断矩阵所下的定义,1阶、2阶判断矩阵总是完全一致的。当阶数大于2时,判断矩阵的一致性指标CI,与同阶平均随机一致性的指标RI之比称为判断矩阵的随机一致性比率,记为CR。当CR=<0.01时,判断矩阵具有满意的一致性,否则就需对判断矩阵进展调整。四、层次总排序利用同一层次中所有层次单排序的结果,就可以计算针对上一层次而言本层次所有因素重要性的权值,这就是层次总排序。层次总排序需要从上到下逐层顺序进展,设已算出第k-1层上n个元素相对于总目标的排序为,第k层个元素对于第层上第j个元素为准则的单排序向量其中不受第j个元素支配的元素权重取零,于是可得到阶矩阵==其中中的第列为第k层个元素对于第层上第j个元素为准则的单排序向量。记第k层上各元素对总目标的总排序为:则=即有,五、一致性检验为评价层次总排序的计算结果的一致性若何,需要计算与单排序类似的检验量。由高层向下,逐层进展检验。设第k层中某些因素对k-1层第j个元素单排序的一致性指标为,平均随机一致性指标为,(k层中与k-1层的第j个元素无关时,不必考虑),那么第k层的总排序的一致性比率为:同样当≤0.10时,我们认为层次总排序的计算结果具有满意的一致性。8.3.3层次分析法在T.L.Saaty正式提出以来,由于它在处理复杂的决策问题上的实用性和有效性,很快就在世界范围内得到普遍的重视和广泛的应用,目前它的应用已普及经济方案和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、医疗、环境等领域。从处理的类型看,主要是决策、评价、分析、预测等,这个方法在20世纪80年代初引入我国,很快为广阔的数学工作者和有关领域的科技人员所承受,得到了成功的应用。1旅游地的选择问题:某人准备假期旅游,初次筛选了桂林、黄山和北戴河三处旅游地,但每个旅游地的风光、所需费用、居住条件、饮食条件交通等各不一样,若何在3个旅游地中按照风光、费用、居住条件、饮食和路途6个因素选择一个最正确的旅游地。根据层次分析的基本思想,可分以下几步进展处理:将选择旅游地的决策问题分解为三个层次,最上层为目标层,即选择旅游地,最下层为方案层,有P1〔桂林〕、P2〔黄山〕、P3〔北戴河〕三个供选择的地点,中间层为准则层,有C1〔风光〕、C2〔费用〕、C3〔居住〕、C4〔饮食〕、C5〔旅途〕5个准则,各层间的联系用相连的直线表示如图8.3所示。目标层O(选择旅游地)准则层C1风光C2费用C3居住C4饮食C5旅途方案层P1桂林P2黄山P3北戴河图8.3相对于总目标而言,根据旅游者自己的喜好,给出5个准则之间的相对重要性,利用Saaty等人提出用1-9尺度赋值,构造准则层对目标的成比照拟阵构造判断矩阵这里,判断矩阵是不一致,如,为了计算对于上一层选择旅游地而言本层次的5个准则的重要性次序的权值和判断矩阵是否具有满意的一致性,利用MATLAB软件可求出矩阵A的最大特征根=5.073及对应于λ的正规化特征向量=(0.263,0.475,0.055,0.090,0.110。一致性指标随机一致性指标RI=1.12(n=5,查表),一致性比率CR=0.018/1.12=0.016<0.1通过一致性检验,所以判断矩阵具有满意的一致性。对于上一层选择旅游地而言本层次的5个准则的重要性次序的权值=(0.263,0.475,0.055,0.090,0.110。同样求第3层(方案)对第2层每一元素(准则)的权向量:方案层对C1(风光)的成比照拟阵,最大特征根对应于的正规化特征向量=(0.595,0.276,0.128。一致性指标随机一致性指标=0.58(n=3),一致性比率CR=0.003/0.58=0.0052<0.1,通过一致性检验,所以判断矩阵具有满意的一致性。对于上一层风光而言本层次的3个方案的重要性次序的权值(0.595,0.276,0.128。方案层对C2(费用)的成比照拟阵,最大特征根对应于的正规化特征向量=(0.082,0.236,0.682。一致性指标,随机一致性指标=0.58(n=3),一致性比率CR=0.001/0.58=0.0017<0.1,通过一致性检验,所以判断矩阵具有满意的一致性。对于上一层费用而言本层次的3个方案的重要性次序的权值(0.082,0.236,0.682。方案层对C3(居住)的成比照拟阵最大特征根对应于的正规化特征向量=(0.429,0.429,0.142。一致性指标,随机一致性指标RI=0.58(n=3),一致性比率=0/0.58=0<0.1,通过一致性检验,所以判断矩阵具有满意的一致性。对于上一层居住而言本层次的3个方案的重要性次序的权值(0.429,0.429,0.142。方案层对C4(饮食)的成比照拟阵,最大特征根对应于的正规化特征向量=(0.634,0.192,0.174。一致性指标随机一致性指标=0.58(n=3),一致性比率CR=0.0045/0.58=0.0078<0.1,通过一致性检验,所以判断矩阵具有满意的一致性。对于上一层饮食而言本层次的3个方案的重要性次序的权值=(0.634,0.192,0.174。方案层对C5(旅途)的成比照拟阵最大特征根对应于的正规化特征向量=(0.167,0.167,0.667。一致性指标,随机一致性指标=0.58(n=3),一致性比率CR=0/0.58=0<0.1,通过一致性检验,所以判断矩阵具有满意的一致性。对于上一层旅途而言本层次的3个方案的重要性次序的权值=(0.167,0.167,0.667。=第3层〔方案层〕对第1层〔目标层〕的组合权向量=即选取桂林、黄山、北戴河的权重分别为0.299、0.245和0.455.组合一致性检验记=======0.003,通过一致性检验,我们认为层次总排序的计算结果具有满意的一致性,所以旅游地的选取次序为北戴河、桂林、黄山,它们的权重分别为0.455、0.299和0.245.2、一笔留成利润利用的综合评价背景:某企业有一笔留成利润要由领导决定其用途,总目标是希望能促进工厂更进一步开展。可供选择的方案有:作为奖金发给职工;扩建食堂、托儿所等福利设施;开办职工业
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安顺开发区三联学校2026年春季教师招聘备考题库(23名)有完整答案详解
- 2025年在线问诊平台专科医师资源布局报告
- 2026年广州市妇女儿童医疗中心校园招聘144人备考题库及答案详解(考点梳理)
- 2025年“才聚齐鲁成就未来”山东通汇资本投资集团有限公司招聘备考题库完整答案详解
- 2026年天津市双菱中学招聘教师23人备考题库及一套完整答案详解
- 城市地下空间2025年开发利用创新模式可行性研究-技术创新视角
- 2026年百色市田东县义圩中心卫生院自主招聘备考题库参考答案详解
- 2026年广东省退役军人服务中心公开招聘编外聘用工作人员备考题库及一套答案详解
- 2026年上海市同济口腔医院(同济大学附属口腔医院)实验技术员招聘备考题库及参考答案详解一套
- 2025年区块链农产品质量安全追溯应用场景报告
- 2024高考二模模拟训练数学试卷(原卷版)
- 增值税销售货物或者提供应税劳务清单(模板)
- 35770-2022合规管理体系-要求及使用指南标准及内审员培训教材
- 2022年福建翔安区社区专职工作者招聘考试真题
- 四川省成都市青羊区2023年九年级一诊英语试卷
- 《高势能品牌》读书笔记思维导图
- 拆零药品登记表
- 英语电影的艺术与科学智慧树知到答案章节测试2023年中国海洋大学
- 附件1北京建筑大学新办本科专业教学评估方案
- GB/T 16786-2007术语工作计算机应用数据类目
- 中国地质大学武汉软件工程专业学位研究生实践手册
评论
0/150
提交评论