《统计学》课程教案_第1页
《统计学》课程教案_第2页
《统计学》课程教案_第3页
《统计学》课程教案_第4页
《统计学》课程教案_第5页
已阅读5页,还剩105页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

统计学教案

第一部分课程综述

一、课程性质

统计学是一门研究客观现象总体数量特征的方法论科学,具有综合性、应用性和数量性的

特征。它系统地介绍了统计理论与方法的历史发展过程及其经典理论、学派、代表人物;较全

面地阐述了统计基本理论与基本方法;特别是对二十世纪后期出现的新的统计理论与方法作了

重点介绍,以便让学生更好地了解和掌握统计学的发展趋势和发展规律。

二、教学目的

《统计学》是高等院校财经类专业的必修课、核心课之一。为了使学生掌握市场经济条件

下,数据资料的搜集加工、分析及预测方法,本课程将从实际应用入手,即在统计理论基础上

重点阐述统计工作各个阶段、不同实际应用方面的操作方法,力求体现统计学的社会性与科学

性相结合的特点。通过本课程的教学,使学生能够在理论联系实际的基础上,比较系统地掌握

统计学的基本思想、基本理论、基础知识和基本方法;理解并记忆统计学的有关基本概念和范

畴;掌握并能运用统计基本方法和技术进行统计设计、统计调查、统计整理和一定的统计分析,

使学生掌握并应用该工具为自己所学专业服务,以提高学生科学研究和实际工作能力。

三、教学内容

1、考虑到财经类各专业未设置《统计学原理》与各专业统计课程,因而《统计学》的内容

既包括统计方法,也包括必要的社会经济指标核算知识,使一般的统计理论方法,落实到实际

的指标体系的运用上。

2、考虑到财经类各专业都需要加强数量分析能力的培养,因此,不但介绍一般的统计方法,

而且还介绍了常用的数理统计方法在社会经济领域中的应用。

3、考虑到《统计学》是一门方法论方面的应用科学,因而在《统计学》中,一方面对于描

述统计内容保持一定比例,另一方面也应加强统计分析、统计推断和统计核算方面的内容。

四、教学时数

*-44-

早T课时数(54)课时数(72)

绪论46

统计资料的搜集与整理79

统计描述79

抽样分布与参数估计78

假设检验35

方差分析34

相关与回归分析57

时间数列分析1010

统计指数78

国民经济统计概述16

合计5472

五、教学方法

板书、幻灯片、多媒体、统计调查实践、上机实验等配合使用。

六、面向专业

财经类各专业及其他相关专业。

第二部分课程教学内容

第一章绪论

(-)教学目的

通过本章的学习,要求对统计学的内容、研究对象、性质、应用范围及基本方法,尤其是

统计学的基本概念有正确的理解和认识。

(-)基本要求

要求首先对统计学这门课程有一个整体上的认识,了解这门课程的产生和发展过程,并进

一步掌握其主要内容和基本方法。

(三)教学要点

1、统计一词的涵义、相互关系;

2、统计学的研究对象、及其学科性质;

3、统计的应用与基本方法;

4、统计学的基本概念,主要包括:总体、单位、样本、指标、变量。

(四)教学时数

4------6课时

(五)教学内容

本章共分三节:

第一节统计与统计学

一、统计的含义

“统计”一词在各种实践活动和科学研究领域中经常出现.然而,不同的人,或在不同的

场合,对其理解是有差异的。比较公认的看法是,统计有三种含义,即统计活动、统计数据和

统计学。

1.统计活动

统计活动又称统计工作,是指收集、整理和分析统计数据,并探索数据的内在数量规律性

的活动过程。

2.统计资料

统计资料或称统计数据,即统计活动过程所获得的各种数字资料和其他资料的总称。表现

为各种反映社会经济现象数量特征的原始记录、统计台帐、统计表、统计图、统计分析报告、

政府统计公报、统计年鉴等各种数字和文字资料。

3.统计学

统计学是指阐述统计工作基本理论和基本方法的科学,是对统计工作实践的理论概括和经

验总结。它以现象总体的数量方面为研究对象,阐明统计设计、统计调查、统计整理和统计分

析的理论与方法,是一门方法论科学.

统计工作、统计资料和统计学之间有着密切联系。统计工作同统计资料之间是过程同成果

之间的关系,统计资料是统计工作的直接成果。就统计工作和统计学的关系来说,统计工作属

于实践的范畴,统计学属于理论的范畴,统计学是统计工作实践的理论概括和科学总结,它来

源于统计实践,又高于统计实践,反过来又指导统计实践,统计工作的现代化同统计科学研究

的支持是分不开的。

统计工作、统计资料和统计学相互依存、相互联系,共同构成了一个完整的整体,这就是

我们所说的统计。

二、统计学的研究对象、特点

社会经济统计学的研究对象,是社会经济现象的总体的数量方面,即社会经济现象总体的数

量特征和数量关系。

社会经济统计是对社会经济现象的一种调查分析活动,它具有以下特点。

(-)数量性

统计的研究对象是客观现象数量方面,包括数量的多少,数量之间的关系。质量互变的数量

界限。

(二)总体性

统计研究对象是客观总体现象的数量方面。如人口统计是要反映和研究一个国家或一个地区

全部人口的综合数量特征,而不是要了解和研究某个人的特征,但是它是从每个人调查开始的。

人口统计是这样,其他统计活动也是这样。

(三)变异性

统计研究同类现象总体的数量特征,它的前提则是总体各单位的特征表现存在着差异,而且

这种差异并不是由某种固定的原因事先给定的

三、统计学研究的基本环节

(-)统计设计:根据所要研究问题的性质,在有关学科理论的指导下,制定统计指标、

指标体系和统计分类,给出统一的定义、标准,同时提出收集、整理和分析数据的方案和工作

进度等;

(二)收集数据:收集统计数据的基本方法包括科学实验和统计调查。

如何科学地进行调查是统计学研究的重要内容

(三)整理与分析:统计整理分析的方法可分为描述统计和推断统计两大类。

描述统计是指对采集的数据进行登记、审核、整理、归类,在此基础上进一步计算出各种能

反映总体数量特征的综合指标,并用图表的形式表示经过归纳分析而得到的各种有用的统计信

息。

推断统计是在对样本数据进行描述的基础上,利用一定的方法根据样本数据去估计或检验总

体的数量特征。

(四)统计资料的积累、开发与应用:统计资料的积累、开发与应用必须将实质性学科的

理论与统计方法相结合。

第二节统计学的种类极其性质

统计方法已广泛应用于自然科学和社会科学的众多领域,统计学也发展成为由若干分支组

成的学科体系。由于出于不同的视角或不同的研究重点,人们常对统计学科体系作出不同的分

类。一般而言,有两种基本的分类:从方法的功能来看,统计学可以分成描述统计学和推断统

计学;从方法研究的重点来看,统计学可分为理论统计学和应用统计学。

一、描述统计学和推断统计学

描述统计学(DescriptiveStatistics)研究如何取得反映客观现象的数据,并通过图表

形式对所搜集的数据进行加工处理和显示,进而通过综合、概括与分析得出反映客观现象的规

律性数量特征。描述统计学的内容包括统计数据的搜集方法、数据的加工处理方法、数据的显

示方法、数据分布特征的概括与分析方法等。

推断统计学(InferentialStatistics)研究如何根据样本数据去推断总体数量特征的方

法,它是在对样本数据进行描述的基础上,对统计总体的未知数量特征作出以概率形式表述的

推断。

描述统计学与推断统计学的划分,还反映了统计方法发展的前后两个阶段和使用统计方法

探索客观事物数量规律性的不同过程。统计研究过程的起点是统计数据,终点是探索出客观现

象内在的数量规律性。在这一过程中,如果搜集到的是总体数据(如普查数据),那么运用描述

统计就可以达到认识总体数量规律性的目的;如果获得的只是研究总体的一部分数据(样本数

据),那么要找到总体的数量规律性,就要运用概率论的理论并根据样本信息,对总体进行科学

的推断。显然,描述统计和推断统计是统计方法的两个组成部分。描述统计是整个统计学的基

础,推断统计则是现代统计学的主要内容。而且,推断统计在现代统计学中的地位和作用越来

越重要,已成为统计学的核心内容,这是因为在对现实问题的研究中,所获得的数据主要是样

本数据。但这并不等于说描述统计不重要。如果没有描述统计搜集可靠的统计数据并提供有效

的样本信息,再科学的统计推断方法也难以得出切合实际的结论。从描述统计学发展到推断统

计学,既反映了统计学发展的巨大成就,也是统计学发展成熟的重要标志。

二、理论统计学和应用统计学

理论统计学(TheoreticalStatistics)即数理统计学(MathematicalStatistics)主要

探讨统计学的数学原理和统计公式的来源。由于现代统计学几乎用到了所有方面的数学知识,

从事统计理论和方法研究的人员需要有坚实的数学基础。而且,由于概率论是统计推断的数学

和理论基础,所以广义的统计学亦应包括概率论在内。理论统计学是统计方法的理论基础,没

有理论统计学的发展,统计学也不可能发展成为像今天这样一个完善的科学知识体系。理论统

计学包括的主要内容有:概率理论、抽样理论、实验设计、估计理论、假设检验理论、决策理

论、非参数统计、序列分析、随机过程等。

应用统计学(AppliedStatistics)探讨如何运用统计方法去解决实际问题。其实,将理

论统计学的原理应用于各个学科领域,就形成了各种各样的应用统计学。例如,统计方法在生

物学中的应用形成了生物统计学,在医学中的应用形成了医疗卫生统计学,在农业试验、育种

等方面的应用形成了农业统计学。统计方法在经济和社会科学领域的应用也形成了若干分支学

科。例如,统计方法在经济领域的应用形成了经济统计学及其若干分支,在管理领域的应用形

成了管理统计学,在社会学研究和社会管理中的应用形成了社会统计学,在人口学中的应用形

成了人口统计学,等等。应用统计学除了包括各领域通用的方法,如参数估计、假设检验、方

差分析等之外,还包括某领域所特有的方法,如经济统计学中的指数法、现代管理决策法等。

应用统计学着重阐明这些方法的统计思想和具体应用,而不是统计方法数学原理的推导和证明。

三、统计学和有关学科的联系与区别

(-)统计学与数学

统计学与数学有着密切的联系,又有本质的区别。现代统计学用到很多数学知识,研究理

论统计学的人需要较深的数学功底,使用统计方法的人要具有良好的数学基础。这可能给人造

成一种错觉,似乎统计学是数学的一个分支,这种理解是不妥当的。实际上,数学只是为统计

理论和统计方法的发展提供了数学基础,而统计学的主要特征是研究数据;另一方面,统计方

法与数学方法一样,并不能独立地直接研究和探索客观现象的规律,而是给各学科提供了一种

研究和探索客观规律的数量方法。统计学与数学又有着本质的区别.首先,虽然表面上看统计

学与数学都是研究数量规律,跟数字打交道的,但是,数学研究的是抽象的数量规律,而统计

学研究的则是具体、实际现象的数量规律;数学研究的是没有量纲或单位的抽象的数,而统计

学研究的则是有具体实物或计量单位的数据。其次,统计学与数学在研究中所使用的逻辑方法

也是不同的,即数学研究所使用的是纯粹的演绎,而统计学则是演绎与归纳相结合,占主导地

位的是归纳。数学家可以坐在屋里,凭借聪明的大脑从假设命题出发推导出结果,而统计学家

则需要深入实际搜集数据,并与具体实际问题相结合,经过科学的归纳才能得出有益的结论。

(二)统计学与其他学科的关系

统计学是一门应用性很强的学科.几乎所有的学科都要研究和分析数据,因而统计学与这

些学科领域都有着或多或少的联系。这种联系表现为,统计方法可以帮助其他学科探索学科内

在的数量规律性,但若要对这种数量规律性作出内在必然联系的解释并从中把握该学科研究实

体的实际规律,那就要由该学科的具体研究来完成了。例如,大量观察法已经发现了新生婴儿

的性别比是107:100,但为什么是这样的比例?形成这一比例的原因应由人类遗传学或医学来

研究和解释,而非统计方法所能解决的。再如,利用统计方法对吸烟和不吸烟者患肺癌的数据

进行分析,得出吸烟是导致肺癌的原因之一的结论,但为什么吸烟能导致肺癌?这就需要医学

去解释了。由此我们可以看出统计学能做什么和不能做什么。可以这样说,统计方法仅仅是一

种有用的定量分析工具,它不是万能的,不能解决你想要解决的所有问题。能否用统计方法解

决各学科的具体问题,首先要看使用统计工具的人能否正确选择统计方法;其次还要在定量分

析的同时进行必要的定性分析,也就是要在使用统计方法进行定量分析的基础上,应用该学科

的专业知识对统计分析的结果作出合乎规律的解释和分析,这样才能得出令人满意的结论。尽

管各学科所需要的统计知识不同,所使用的统计方法的复杂程度各异,统计学也不能解决各学

科的所有问题,但统计方法在各学科的研究中将会发挥越来越重要的作用。

1.统计学与哲学的关系:哲学是统计学的方法论基础。存在决定意识,质量互变原理。

2.统计学与经济学的关系:经济学是统计学的基础。

3.统计学与数学的关系:统计学中要运用大量的数学方法。

4.统计学与数理统计学的关系:一方面,统计学的产生先于数理统计学,从一定意义上说,

它是数理统计学的基础;另一方面,统计学的研究中要运用大量的数理统计方法。

5.统计学与计量经济学的关系:计量经济学是经济学与统计学的综合;经济计量方法是经

过修正后的社会经济统计方法从这个意上说,统计学是计量经济学的基础。

第三节统计学的基本概念

一、统计总体和总体单位

(一)统计总体:由客观存在的、在同一性质基础上结合起来的许多0别单位所形成的集

具有大量性、同质性、变异性等特征。

(-)总体单位:构成统计总体的个体单位称总体单位。总体由总体单位构成,要认识

总体必须从总体单位开始。

(三)统计总体与总体单位的相对性:

在一次特定范围、目的的统计研究中,统计总体与总体单位是不容混淆的,二者的含

义是确切的,是包含与被包含的关系.但是随着统计研究任务、目的及范围的变化,统计总体

和总体单位可以相互转化。

(四)统计总体的种类:

1、有限总体:指所包含的单位数目有限的总体;

2、无限总体:指所包含的单位数目无限的总体

二、样本

1、由总体的部分单位组成的集合称为样本,样本所包含的总体单位数称为样本容量。

2、抽取样本时应注意的问题:

(1)样本单位必须取自同一总体;

(2)样本个数与样本容量与抽样方法有关;

(3)样本须按照随机原则抽取;

(4)样本推断总体存在误差。

三、标志

(一)标志

1、概念:是总体单位所具有的属性和特征的名称。

2.种类

(1)其性质分可分为品质标志和数量标志。品质标志是表明总体单位的属性特征,一般用

文字说明,而不能用数量表示,如性别、文化程度、民族等。数量标志表明总体的数量特征,是

用数值表示的,如年龄、工资、工龄等。

(2)其变动情况分为不变标志和可变标志。无论品质标志还是数量标志,当某个标志在各

个总体单位上的具体表现相同时,该标志是不变标志。如,以全国国有商业企业为总体,每个企

业都具有经济成份和商业企业这两个不变标志。

当某个标志在总体各个单位上的表现不尽相同时,该标志为变动标志,组成一个总体的各

个总体单位都具有许多变动标志。例如在全国国有商业企业这个总体中,各企业的经营范围、营

业面积、劳动生产率、商品销售额等标志都是不相同的,是变动标志。

(二)标志的表现

1、标志的表现是指标志特征在各单位的具体表现。

2、品质标志的标志表现用文字表述,如“汉族”、“大专”、等。

3;数量标志的标志表现是具体数值,如职工的工龄8年或10年,商品销售额100万元或

400万元。

四、变异和变量

(一)变异

变异是变动的标志,具体表现在各个单位的差异,包括量(数值)的变异和质(性质、属性)

的变异。如:性别表现为男、女,这是属性变异;年龄表现为18岁、25岁、28岁等这是数值上

的变异。

(二)变量

1.概念

变量就是可变的数量标志。例如,商业企业的职工人数、商品流转额、流动资金占用额等数

量标志,这些变动的数量标志就称做变量。

变量值就是变量的具体表现,也就是变动的数量标志的具体表现。例如,企业的职工人数是

一个变量,甲企业职工人数100人,乙企业职工人数150人,丙企业职工人数200人等等,100

人、150人、200人,都是职工人数这个变量的变量值(标志值)。

2.种类

按变量值的连续性可把变量区分为连续变量和离散变量两种。连续变量的变量值是连接不断

的,相邻的两个数值之间可以作无限的分割,一般可以表现为小数。例如,人的身高、体重、年

龄等都是连续变量。离散变量的变量值是间断的。例如,职工人数、商业企业数、机器设备台数

都只能按整数计算,不可能有小数。

五、统计指标和指标体系

(-)统计指标的概念

统计指标是反映总体数量特征的概念和数值。例如,我国2001年国内生产总值95933亿元,

它是根据一定的统计方法对总体各单位的标志表现进行登记、核算、汇总而成的统计指标,说明

我国国民经济这个数量特征。这个数量指标的名称是“国内生产总值”,指标的数值是“95933

亿元”

(-)特点

1.数量性

2.综合性

3.具体性

(三)统计指标与统计标志联系与区别

1、区别:一是指标说明总体的数量特征,而标志说明总体单位特征;二是指标都可以用数

量表示,而标志有不能用数量表示的品质标志。

2、联系:一是许多统计指标的数值是由总体单位的数量标志汇总得到的;二是指标和指标

之间存在变化关系。

(四)统计指标的种类

1.统计指标按它所说明的总体现象内容的特征,可以分为数量指标和质量指标。

(1)数量指标是反映总体某一特征的绝对数量。这类指标主要说明总体的规模、工作总量

和水平,一般用绝对数表示。例如,某一地区的总人口、工业企业总数、国民生产总值等等。

(2)质量指标是反映总体的强度、密度、效果、结构、工作质量等,例如,人口密度、劳

动生产率、资金利润率等。这类指标一般用平均数、相对数表示。这些质量指标的数值并不随

总体范围的大小而增减。例如一个100万人口的城市第三产业在国民生产总值所占的比重也可

能小于某个30万人口的城市第三产业在国民生产总值中所占的比重。

2.统计指标按其具体内容和作用,可以分为总量指标、相对指标和平均指标。

(1)总量指标是反映总体现象规模的统计指标,它表明总体现象发展的结果。例如上述的

总人口、国民生产总值等便是。

(2)相对指标是两个有联系的总量指标和平均指标相比较的结果,又分两种情况:同一指

标不同时期的数值对比可以说明事物的发展变化,如人口增长率、成本降低率;用总体中部分

数值与总体数值相比说明事物的内部结构,如三次产业在国民生产总值中所占比重。

(3)平均指标是按某个数量标志说明总体单位一般水平的统计指标,如平均工资、平均成

本等等。

(五)指标体系

1.指数体系的概念和意义

(1)概念:统计指标体系是指若干个相互联系的统计指标组成的,一个整体社会经济现象

本身的联系也是多种多样的。例如,在商品流转统计中,商品购进、商品销售和商品库存是相互

联系和相互制约的统计指标,由这些统计指标组成的一个整体就是商品流转统计指标体系。

(2)意义:可以深刻认识事物的全貌和发展过程;利用统计指标体系,可以查明产生各种

结果的主要因素,了解指标之间的相互联系,可以根据已知指标来计算和推测未知指标。

2.指标体系种类

统计指标体系大体上可分为两大类,即基本统计指标体系和专题统计指标体系。

基本统计指标体系是反映国民经济和社会发展及其各个组成部分的基本情况的指标体系。

专题统计指标体系是对某一个经济问题或社会问题制定的统计指标体系。例如,商品流转统

计指标体系、经济效益统计指标体系、人民物质文化生活水平统计指标体系等等。

六、统计数据

(一)统计数据的计量尺度

1、定类尺度:按现象性质差异进行的辨别与区分。测量结果形成定类变量或定类指标。

定类变量或指标确切的值是以文字表述的,可以用数值标识,但仅起标签作用。定类变量或指

标的各类别间是平等的,没有高低、大小、优劣之分。

2、定序尺度:按现象顺序差异进行的辨别与区分。测量结果形成定序变量或定序指标。

定序变量或指标确切的值是以文字表述的,也可以用数值标识,但仅起标签作用。定序变量或

指标各类别间有高低优劣之分,不能随意排列。

3、定距尺度:按现象绝对数量差异进行的辨别与区分。测量结果形成定距变量或定距指

标。定距变量或指标的值以数字表述,有计量单位,可以进行加减运算。定距变量或指标各类

别间自然有大小之分,但没有绝对的零点,不能进行乘除计算。

4、定比尺度:按现象绝对差异与相对差异进行的辨别与区分。测量结果形成定比变量或

定比指标。定比变量或指标确切的值也以数字表述,有计量单位,可以进行加减运算。定比变

量或指标有绝对意义上的零点,既可以加减运算,也可以乘除运算。

(二)数据的类型:

1、根据对客观现象观察的角度不同,统计数据分为:静态数据和动态数据。

2、根据变量值连续出现与否,变量分为:连续变量和离散变量。

3、根据变量的取值确定与否,变量分为确定性变量和随机变量。

(三)数据的表现形式:

1、绝对数:反映被研究对象在一定时期或时点的规模、水平或性质相同总体规模的数量

差异。一般用绝对数表示,又称绝对数指标。

按反映的时间状况划分为时期指标和时点指标。

时期指标:反映社会经济现象在一定时期内发展变化过程总量的指标,如:商品销售额、

总产值、基本建设投资额等。

时点指标:反映社会经济现象在一定时点上状况的数量的指标,如:人口数、房屋的居住

面积,企业数等。

时期指标和时点指标的特点(区别):

a.性质相同的时期指标的数值可以相加,时点指标相加则无意义。

b.同类时期指标数值的大小与时期长短有直接关系,时点指标则没有这种关系。

C.时期指标数值是经常登记取得,时点指标不是。区分时期指标和时点指标决定了统计

处理与应用上的不同,在运用时期和时点指标时,注意同一指标若从不同的角度考虑则总量指

标的性质也不同,如:年末人口数和年初人口数是时点指标,但年末人口数一年初人口数=人

口净增数则为时期指标。

2、相对数:两个有联系的指标数值之比,反映现象之间所固有的数量对比关系。常用的

相对数包括:结构相对数、动态相对数、比较相对数、强度相对数、利用程度相对数、计划完成

相对数。

3、平均数:反映现象总体的一般水平或分布的集中趋势。

本章的重点

1、统计学的基本概念;

2、统计学科的研究对象和研究方法;

3、统计学的学科性质。

本章的难点

统计学各基本概念之间的联系与区别

复习思考题

1、统计的涵义及其他们之间的关系。

2、简述统计的产生和发展过程。

3、统计学的研究对象是什么?研究对象有哪些特点?

4、怎样理解统计总体的同质性和变异性?

5、为什么说没有变异就没有统计研究的必要?

6、简述统计学与数学的联系与区别。

7、简述总体、单位、样本的含义及其相互关系。

第二章统计资料的搜集与整理

(-)教学目的

通过本章的学习,了解统计数据搜集与整理的基本理论与方法,掌握各种方法的特性。

(二)基本要求

要求灵活运用各种数据搜集的方式方法,并对所得数据进行加工整理,为以后各章学习统

计分析方法打下基础。

(三)教学要点

1、数据采集的方式方法;

2、统计调查方案的设计;

3、统计分组;

4、变量数列的编制;

5、统计数据的显示。

(四)教学时数

7——9课时

(五)教学内容

本章共分四节:

第一节统计资料的搜集

一、统计资料搜集概述:

(-)统计数据搜集的概念:

1、概念:统计数据搜集是指根据统计研究预定的目的和任务,运用科学的调查方法与手段,

有计划、有组织地从客观实际采集数据的过程。

2、方式:

(1)直接向调查对象搜集反映调查单位的统计资料(一般称为原始资料);

(2)根据研究目的,搜集已经加工、整理过的,说明总体现象的资料(一般称为二手资

料)。

(二)统计资料搜集的方案设计:

统计调查的工作量大,内容繁杂,研究目的和任务又客观要求调查资料的准确性、全面

性和及时性,为了做好本阶段的工作,在调查工作开始之前,必须制定出一个周密的调查方案,

对整个阶段的工作进行统筹考虑、合理安排,保证统计调查工作的效率和质量。

一个完整的统计调查方案应包括的主要内容:

1、确定调查目的

统计调查是为一定的统计研究任务服务的,在制定调查方案时.,首先要确定调查目的,即

调查中要研究解决的问题和要取得的资料。例如,2000年11月1日零时举行的全国第五次人

口普查的调查方案中,明确规定这次调查的目的就在于:为了准确的查清第四次全国人口普查

以来我国人口在数量、地区分布、结构和素质方面的变化,为科学的制定国民经济和社会发展

战略规划,统筹安排人民的物质和文化生活,检查人口政策执行情况,提供可靠的资料。可见,

在这一调查方案中,调查目的是具体和明确的。

2、确定调查对象和调查单位

统计调查的目的确定以后,就可以进一步确定调查对象和调查单位。确定调查对象和调查

单位,就是为了回答向谁调查、由谁来具体提供资料的问题。

(1)调查对象:就是根据调查目的所确定的统计总体。例如,人口普查的对象就是全国的

人口总体。

(2)调查单位是进行调查登记的标志值的承担者。如我国进行的第五次人口普查,全国的

人口总体(具有中国国籍,并在中国国境内常住的自然人)就是调查对象,每一个人就是调查

单位。

明确调查单位,还要同填报单位区别开来。填报单位是填写调查内容、提供资料的单位,

它可以是一定的部门或单位,也可以是调查单位本身,这要根据调查对象的特点和调查任务的

要求确定。

3、确定调查项目

调查项目就是所要调查的内容,及所要登记的调查单位的特征•调查项目一般就是调查单

位各个标志的名称,包括品质标志和数量标志两种。

调查项目确定后,就要将这些调查项目科学的分类排队,并按一定顺序列在表格上,这种

供调查使用的表格就叫调查表,

4、拟定调查表和问卷设计

(1)调查表:调查项目确定后,就要将这些调查项目科学的分类排队,并按一定顺序列在

表格上,这种供调查使用的表格就叫调查表,

调查表一般分为单一表和一览表两种。

单一表(又称卡片式)是将一个调查单位的调查内容填列在一份表格上的调查表。它可以

容纳较多的项目,且便于分类整理和汇总审核。

一览表就是把许多个调查单位和相应的项目按次序登记在一张表格里的调查表。它便于合

计和核对差错,但一般要在调查项目不多时采用。

问卷调查是一种特殊的调查形式,根据调查目的,在调查对象中随机选择或有意识地确定

调查单位,以文字或表格形式了解被调查者的意见,被调查者自愿、自由地回答问卷中所提出

的问题。问卷设计的设计应简明扼要。以保证所搜集资料的准确。

5、确定调查时间和调查期限

调查时间是调查资料的所属时间。调查时间可以是时期,也可以是一定的时点。调查期限

是进行调查工作所要经历的时间,包括搜集资料和报送资料的工作所需的时间,应尽可能缩短。

如第五次全国人口普查,因为人口数量是时点,所以规定的标准调查时点是2000年11月1日

零时。

5、制定调查的组织实施计划

调查组织工作包括确定调查机构,组织和培训调查人员,落实调查经费的来源和开支办法,

确定调查资料的报送办法和公布调查结果的时间。

(三)实验设计的原则

1、重复性原则;

2、随机化原则;

3、双盲原则。

二、统计数据的搜集方法:

任何一种调查都必须采用一定的调查方法去搜集原始资料,即使调查的组织形式相同,其调

查方法也可以是不同的。应根据调查目的与被调查对象的具体特点,选择合适的调查方法。

(-)直接观察法:是指由调查人员到现场对调查对象进行观察点数和计量。

(二)报告法(通讯法):一般是由统计工作机构将调查表格分发或电传给被调查者,被调查

者根据填报的要求将填好的调查表格寄回。

(三)采访法:是根据被调查者的答复来搜集统计资料,这种方法又可分为口头询问法和被

调查者自填法两种。口头询问法是由调查人员对被调查者逐一采访,当面填答。被调查者自填法

即调查人员把调查表交给被调查者,向被调查者说明填表的要求和方法,并对有关注意事项加以

解释,由被调查者按实际情况一一填写,填好后交调查人员审核收回。

(四)登记法:是由有关的组织机构发出通告,规定当事人在某事发生后到该机构进行登记,

填写所需登记的材料。

(五)实验设计调查法:是用于搜集测试某一新产品、新工艺或新方法使用效果的资料的方法。

其他的调查方法还有:

1.邮寄调查。邮寄调查是通过邮寄、宣传媒体和专门场所等将调查表或问卷送至被调查者手

中,由被调查者填写,然后将调查表寄回或投放到收集点的一种调查方法。这是一种标准化调查,

其特点是,调查人员和受调查者没有直接的语言交流,信息的传递完全依赖于调查表。邮寄调查

在统计部门进行的统计报表及市场调查机构进行的问卷调查中经常使用。

2.电话调查。电话调查是调查人员利用电话同受访者进行语言交流,从而获得信息的一种调

查方法。该方法具有时效快,费用低等特点。随着电话的普及,电话调查也越来越广泛。电话调

查可以按照事先设计好的问卷进行,也可以针对某一专门问题进行电话采访。电话调查所提问题

要明确,且数量不宜过多。

3.电脑辅助调查。这种调查也叫做电脑辅助电话调查,就是在电话调查时,调查的问卷、答

案都由计算机显示,整个调查过程,包括电话拨号、调查记录、数据处理等也都借助于计算机来

完成的一种调查方法。目前,电脑辅助调查已在一些发达国家和地区广泛应用,并已开发出了各

种电脑辅助电话调查系统。

4.座谈会。座谈会也称为集体访谈法,就是将一组被调查者集中在调查现场,让他们对调查

的主题发表意见,从而获取资料的方法。参加座谈会的受访者应是所调查问题的专家或有经验者,

人数不宜太多,通常为6—10人,研究人员应对受访者进行严格的甄别、筛选。讨论方式主要看

主持人的习惯和爱好。这种方法能获取其他方法无法取得的资料,因为在彼此交流的环境里,受

访者相互影响、启发、补充,不断修正自己的观点,这就有利于研究者从中获得较为广泛深入的

想法和意见。而且座谈会不会因为问卷过长而遭到拒访。

5.个别深度访问。深度访问是一种一次只要一名受访者参加的特殊的定性研究。“深访”暗

示着要不断深入到受访者的思想中,努力发掘其行为的真实动机。深访是一种无结构的个人访问,

调查者运用大量的追问技巧,尽可能让受访者自由发挥,表达他的想法和感受。深度访问常用于

动机研究,如消费者购买某种产品的动机等,以发掘受访者非表面化的深层意见。这一方法最适

用于研究隐私的问题,如个人隐私问题,或敏感问题,如政治性问题。对于那些不同人之间观点

差异极大的问题,用小组讨论可能会把问题弄糟,这时也可采用深度访问法。

座谈会和个别深访法属于定性方法,通常围绕一个特定的主题取得有关定性资料。此类方法和定

量方法不同。定量方法是从总体中按随机方式抽取样本获得资料r其研究结果或结论可以进行推

论。但定性研究着重于问题的性质和对未来趋势的把握,而不是对研究总体数量特征的推断。座

谈会和个别深度访问主要用于市场调查和研究。

6、网络调查法等。

三、统计调查的各种形式:

(-)按调查的范围划分,可分为:

1、全面调查:对调查对象的所有单位进行调查。

2、非全面调查:对调查对象其中的一部分单位进行调查。

(二)按时间标志可分为:

1、经常性调查:指随着研究现象的变化,连续不断地进行调查登记。

2、一次性调查:是指间隔一段较长的时间才对事物的变化进行一次性调查。

(三)按组织形式可分为:一定期报表:是按国家统一规定的表式和内容,定期向各级领导

机构报送统计资料的一种形式。二专门调查:是为某一专题研究而组织的专项调查。

1.普查。普查(Census)是为某一特定目的而专门组织的一次性全面调查方式,如人口普

查、工业普查、农业普查等。世界各国一般都定期进行各种普查。普查适用于特定目的、特定对

象,旨在搜集有关国情国力的基本统计数据,为国家制定有关政策或措施提供依据。它主要用于

搜集处于某一时点状态上的社会经济现象的数量。普查作为一种特殊的调查组织方式有以下几个

特点:

(1)普查通常是一次性或周期性的。普查涉及面广,调查单位多,要耗费大量的人力、物

力和财力,所以间隔较长时间,如10年才进行一次。我国的人口普查从1953年到1990年共进行过

4次。今后,我国的普查将规范化、制度化,每逢末尾为“0”的年份进行人口普查,末尾为“3”

的年份进行第三产业普查,末尾为“5”的年份进行工业普查,末尾为“7”的年份进行农业普查,

末尾为“1”或“6”的年份进行统计基本单位普查。

(2)普查一般需要规定统一的标准调查时间,以避免调查数据的重复或遗漏,保证普查结

果的准确性。我国前四次人口普查的标准时间定为普查年份的7月1日。时,第五次人口普查为2000

年11月1日0时。农业普查的标准时间定为普查年份的1月1日0时。标准时间一般定为调查对象比

较集中、相对稳定的时期。

(3)普查的数据一般比较准确,规范化程度也高,因此可作为抽样调查和其他调查的依据。

(4)普查的使用范围较窄,只能调查一些最基本或特定的现象。

2.抽样调查。抽样调查(Samplingsurvey)是按照随机原则从总体中抽取一部分单位构成

样本进行观察,并根据样本信息推断总体数量特征的一种非全面调查。这是一种应用最为广泛的

调查组织方式。

抽样调查有如下几个特点:第一、样本单位按随机原则抽取;第二、根据部分调查的实际

资料对总体的数量特征作出估计;第三、抽样误差可以事先计算并加以控制。

抽样调查的适用范围主要有:第一、对一些不可能或不必要进行全面调查的社会现象,采

用抽样调查;第二、对普查资料进行必要的修正。

抽样调查必须遵循以下原则:首先是随机原则,即要使所有调查单位都有同样被抽取的机

会;其次是最大抽样效果原则,即在既定的调查费用下使抽样估计误差最小,或者是在给定的精

确度下,使调查费用最少。

抽样调查的其他具体内容将在后面设专章讨论。

3.统计报表。统计报表(Statisticalreportforms)是按照国家有关法规规定,自上而下

统一布置,自下而上逐级填报的一种调查组织方式。这种调查组织方式在我国政府统计工作中,

经过几十年的改进和完善,已形成了一套比较完备的统计报告制度,它要求以原始数据为基础,

按照统一的表式、指标、报送时间和报送程序填报,己成为国家和地方政府部门获取统计数据的

主要统计调查组织方式。

统计报表类型多样。统计报表按调查范围可分为全面报表和非全面报表;按报送时间可分为

日报、月报、季报和年报等;按报送受体可分为国家、部门、地方统计报表。

4.重点调查。重点调查(Key-pointinvestigation)是指在调查对象中,只从全部总体单

位中选择少数重点单位进行的非全面调查。

这些重点单位尽管在全部总体单位中出现的频数极少,但其某一数量标志却在所要研究的数

量标志值总量中占有很大的比重。例如,要了解全国的钢铁生产总量,只要对产量很大的少数几

个钢铁企业,如鞍钢、宝钢、首钢等进行调查,就可对全国的钢铁生产总量有个大致的认识。这

几个产量很大的企业,构成了这次全国钢产量调查的重点单位,因为它们的钢铁产量在全国的钢

铁生产总量中占有很大比重。

5.典型调查。典型调查(Modelsurvey)是从全部总体单位中选择一个或几个有代表性的单

位进行深入细致调查的一种调查组织方式。典型调查的目的是通过典型单位具体生动、形象的资

料来描述或揭示事物的本质或规律,因此所选择的典型单位应能反映所研究问题的本质属性或特

征。例如,要研究工业企业的经济效益问题,可以在同行业中选择一个或几个经济效益突出的单

位做深入细致的调查,从中找出经济效益好的原因和经验。典型调查主要用于定性研究,调查结

果一般不能推断总体。

四、统计调查体系

我国现阶段使用的统计调查方法体系为:以必要的周期性的普查为基础,经常性的抽样调

查为主体,同时辅之以重点调查、科学推算和部分全面报表综合运用的统计调查方法体系。

五、现有统计资料的主要来源:

从统计数据本身的来源看,统计数据最初都是来源于直接的调查或实验。但从使用者的角度

看,统计数据主要来源于两种渠道:一是来源于直接的调查和科学实验,对使用者来说,这是统

计数据的直接来源,我们称之为第一手或直接的统计数据;二是来源于别人调查或实验的数据,

对使用者来说,这是统计数据的间接来源,我们称之为第二手或间接的统计数据。

对大多数使用者来说,亲自去做调查往往是不可能的。所使用的数据大多数是别人调查或

科学实验的数据,对使用者来说称为二手数据。这方面的资料,可通过两个途径获得:一是从

相关的年鉴、期刊和有关出版物上获取;二是从有关网站搜寻。

(-)统计年鉴

1、《中国统计年鉴》

2、《国际统计年鉴》

3、《地方统计年鉴》

4、《中国县(市)社会经济统计年鉴》

5、《中国金融年鉴》

6、《中国人口统计年鉴》

7、《中国统计摘要》

(-)有关期刊

1、《中国经济数据分析》

2、《经济预测分析》

(三)有关网站

1、中国统计信息网

2、国研网

3、中国经济信息网

4、中国经济时报网

第二节统计数据整理

一、统计数据整理的内容与程序

(-)统计数据整理的概念及意义

1.概念

统计整理,就是根据统计研究的目的,对所搜集到的资料进行科学的加工,使之系统化,

条理化的工作过程。统计整理即包括对统计调查所得到的原始资料进行整理,也包括对加工过

的综合资料,即次级资料进行再整理。

2.意义

统计整理在整个统计研究中占有重要的地位。统计整理的正确与否,将直接影响和决定着

能否完成整个统计研究的任务。如果采用不科学不完整的整理方法,即使搜集到准确、全面的

统计资料,也往往使这些资料失去应用价值,掩盖客观现象的本质,难以得出正确的结论。因

此,必须十分重视统计整理工作。

(二)统计数据整理的内容:

1、根据研究目的设计整理汇总方案

2、根据汇总方案,对各个调查项目的资料进行汇总,通过汇总计算各项指标

3、通过统计表或统计图的形式,描述整理的结果

(三)统计数据整理的程序

第一步,设计和制定统计整理方案。

第二步,对原始资料进行审核。

第三步,对经过审核的资料进行分组、并结合汇总,计算出总体总量指标。

第四步,将汇总计算的结果,以统计表或统计图的形式表现出来。

第五步,对统计资料妥善保存,系统积累。

二、统计分组

(-)统计分组的概念

统计分组就是根据统计研究的需要,将统计总体按照一定的标志分为若干个组成部分的一

种统计方法。例如,将某一班级的全体同学按照性别划分为男、女两个组;对某市100家大型

零售商店按照零售额、职工人数进行分组等。

统计分组具有两个方面的含义:

对总体而言,是“分”,即将同质总体区分为性质有别的不同组成部分;

对总体单位而言,它是“组”,即将性质相同或相近的不同总体单位组合在一起,构成一个

组。

例如,要了解我国人口状况,只知道总人口数量是不够的,而应将人口总体按照年龄、性

别、民族、城乡、文化程度……等分组,才能进一步地深入地了解我国人口总体的年龄结构、

性别比例、民族构成等。

(二)统计分组的作用

1.区分现象的不同类型

2.研究总体的内部结构

3.分析现象间的依存关系

(三)统计分组的原则

1、穷尽原则:就是使总体中的每一个单位都应有组可归,或者说各分组的空间足以容纳总

体中所有的单位。

2、互斥原则:就是在特定的分组标志下,总体中的任何单位只能归属于某一组,而不能同

时或可能归属于几个组。

(四)统计分组的种类

1、按分组标志的多少,可分为简单分组和复合分组。将社会经济总体只选择一个标志分组

称为简单分组。复合分组是用两个或两个以上分组标志重叠起来对总体进行的分组。例如,将

人口先按“性别”分成男、女两组,然后在男性和女性两组中分别按照“文化程度”划分为大

学生及大学以上、高中、初中、文盲及半文盲如下五组。

2、按分组标志的性质不同,分为品质分组(或称属性分组)和数量分组(或称变量分组)。

品质分组就是按品质标志进行分组。一般地,对于以定类尺度或定序尺度计量的,采用品质分

组。数量分组就是按数量标志进行分组。

3、按分组的作用和任务不同,分为类型分组、结构分组和分析分组。把复杂的现象总体划

分为若干个不同性质的部分,就是类型分组。在对总体分组的基础上计算出各组对总体的比重

以研究总体各部分的结构,就是结构分组。为研究对象之间的依存关系而进行的统计分组即分

析分组。

(五)统计分组体系:分组体系有下列形式:

1.平行分组体系

对同一总体选择两个或两个以上的标志分别进行简单分组,排列起来,即成为平行分组体

系。

2.复合分组体系

如果多个复合分组组成的体系就形成了复合分组体系。例如,为了认识我国高等院校在校

学生的基本状况,可以同时选择学科、本科或专科、性别三个标志进行复合分组,并得到如下

复合分组体系:

(六)统计分组的方法

统计分组的关键问题是正确地选择分组标志与划分各组界限。前者主要是指品质标志分组,

后者主要是指数量标志分组。

1.分组标志选择的原则

(1)要选择能够反映事物本质或主要特征的标志

(2)应根据研究的目的与任务选择分组标志

(3)根据现象所处的历史条件的变化选择分组标志

2.统计分组的方法

(1)按品质标志分组

按照品质标志分组就是用来反映事物的属性,性质的标志作为分组标志,就可以将总体单

位划分为若干性质不同的组成部分。

例如,人口按性别、文化程度、民族、籍贯等标志分组;企业按经济类型、轻重工业、隶

属关系,企业规模等标志分组等。

(2)按数量标志分组

按数量标志分组就是用反映事物数量差异的标志作为分组标志,将总体各单位划分为若干

个组。例如,地区经济按国内生产总值分组、企业按销售收入分组等。

A、单项式分组与组距式分组:

单项式分组就是用一个变量值作为一组形成的分组。一般适用于离散型变量且变量变动范

围不大的场合。

组距式分组就是将变量依次划分为几段区间,一段区间表现为从“。。。到。。。”距离,把

一段区间内的作有变量值归为一组,形成组距式分组。一般对于连续型变量或者变动范围较大

的的离散型变量,适宜采用组距式分组。

B、间断组距式分组和连续组距式分组:

组距是上下限之间的距离,相邻两组的界限,称为组限。凡是组限不相连的,称为间断组

距式分组。凡是组限相连(或称相重叠)的,即以同一数值作为相邻两组的共同界限,称为连

续组距式分组。

统计上规定,凡是总体某一个单位的变量值是相邻两组的界限值,这一个单位归入作为下

限值的那一组内,即所谓“上限不在内”原则。

C、等距分组与异距分组:

等距分组就是标志值在各组保持相等的组距,即各组的标志值变动都限于相同的范围。异

距分组即各组的组距不相等。

(七)组距式分组中相关指标的计算

1、组限

组限为组距式变量数列中,每组区间两端的极值称组限。每一组的两个组限中,较大者叫

上限,较小者叫下限,如果各组的组限都齐全,成为闭口组;组限不齐全,即最小组缺下限或

最大组缺上限,称为开口组。

2、组距

组距为每组下限与上限之间的距离为组距。即:组距=上限一下限

组距式变量数列,有等距数列和不等距(异距)数列之分

计算公式:d=R/n其中:d一组距R—全距n一组数

开口组的组距是以相邻组的组距为本组的组距。

3、组数:组数就是分组后各组的个数之和。

斯特杰斯经验公式:n=1+3.31ogN其中:n一组数N—总体单位数

4、组中值:上下限之间的中点数值称为组中值,计算公式入下:

组中值;上限+下限

2

对于开口组中值的计算方式可以利用如下公式:

邻组组距

无下限组的组中值=上限-"叱

2

无上限组的组中值=下限+邻组组距

2

第三节频数分布

一、频数分布的基本概念

(-)频数分布的概念与种类

1、定义:在统计分组的基础上,总体中的所有单位按其所属的组别归类整理,并且按照一

定的顺序排列,形成总体单位数在各组分布的一系列数字,称为分配数列,又称次数分配或次

数分布。

2、分配数列中,分布在各个组的总体单位数叫次数,又称频数。

3、如果将分组标志序列与各组相对应的频率按照一定的顺序排列,就形成频率分布数列。

4、分配数列有两个组成要求:一是分组;另一个是次数或比率。它可根据分组标志的性质

不同,可以分为品质数列与变量数列。

(1)品质数列

它是按品质标志分组的数列,用来观察总体单位中不同属性的单位分布情况。例如,

表2.12000年我国人口性别构成情况

人口性别分组人口数(万人)占人口的比重(%)

男6535551.63

女6122848.37

合计126583100

(分组名称)(次数)(频数)

品质数列的编制比较简单,但要注意分组时,应包括分组标志的所有表现,不能有遗漏,

各种表现相互独立,不得相融。

(2)变量数列

变量数列是将总体按数量标志分组,将分组后形成的各组变量值与该组中所分配的单位次

数或频数,按照一定的顺序相对应排列所形成的分配数列。

表2.2某班级统计学成绩分布表

考试分数人数(人)频率(%)

60以下220.0

60——70730.0

70—801127.0

80—901217.0

90—10085.0

合计40100.0

(各组变量值)(次数)(频数)

二、变量数列的编制

1.单项式变量数列,可以直接将每一变量值作为一组,

表2.3某工厂生产车间工人按日产量分布

日产量工人数比率(%)

20310.0

21723.3

221033.3

23620.1

24413.3

合计30100.0

(各组变量值)(次数)(频率)

单项式变量数列的编制比较明确、容易。但是用连续变量分组来编制分配数列时,或者虽

是离散变量,但数值很多,变化范围很大时,单项数列就不能适用,而应考虑采用组距数列的

形式。

2.组距变量数列的编制

以下举例说明:

[例2.1]对某企业30个工人完成劳动定额的情况进行调查,某原始资料如下迷)

98819584938691102100103

105100104108107108106109112114

109117125115120119118116129113

第一步:计算全距

将各变量值由小到大排序,确定某最大值,最小值,并计算全距。

变量的最大值是129%最小值是81%

全距=最大值-最小值=129%-81%=48%

第二步:确定组数和组距

在等距分组时,组距与组数的关系是:

本例中根据一般将成绩分成优、良、中、及格和不及格的五档评分习惯,可以先确定组数

为5。在等距分组时,计算组距如下:

组距=蟹=9.6%

5

为了符合习惯和计算方便,组距近似地取10%»

第三步:确定组限

关于组限的确定,应注意如下几点:

第一,最小组的下限(起点值)应低于最小变量值,最大组的上限(终点值)应高于最大

变量值。

第二,组限的确定应有利于表现出总体分布的特点,应反映出事物质的变化。

第三,为了方便计算组限应尽可能取整数,最好是5或10的整倍数。

第四,由于变量有连续型变量和离散型变量两种,其组限的确定方法是不同的。

第四步:编制频数(频率)分布表。

表2.4某企业30个工人劳动定额完成情况分布图表

劳动定额完成程度(%)频数(人)频数(%)

80—90310.0

90—100413.3

100—1101240.0

110—120826.7

120—130310.0

合计30100.0

三、计算累计频数和累计频率

为了更详细的认识变量的分布特征,还可以计算累计频数和累计频率,编制累计频数和累

计频率数列。累计频数和累计频率有向上累计频数(频率)和向下累计频数(频率)两种。

以变量值大小为依据,由变量值小的组向变量值大的组累计频数和频率,成为向上累计频

数和向上累计频率。

向上累计数的意义是:小于各组的该组上限的各组的频数或频率之和;相反,由变量值大的

组向变量值小的组累计各组的频数或频率,称为向下累计频数或向下累计频数。

向下累计数的意义是:大于及等于该组下限的各组的频数或频率之和。

根据上例:某企业工人完成劳动定额的资料编制的向上累计频数(频率)和向下累计频数

(频率)分布如表3—8。

表2.5某企业工人完成劳动定额累计分布表

劳动定额向上累计向下累计

频数频率

完成情况频数频率频数频率

(人)(%)

(%)(人)(%)(人)(%)

80~90310.0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论