版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
网格技术网格基础知识导读:讨论网格的基础知识,网格质量要求及判定指标,并探讨网格优化问题。数值仿真的首要工作是前处理,即网格划分,网格划分的本质是利用有限个离散的单元体来代替连续的计算域。在数值仿真三个阶段中,前处理占约40-60%,数值计算5-20%,计算处理后处理约占30%。因此前处理的工作既繁琐又重要,它是进行数值仿真正确分析的基础。网格特征几何要素:网格生成就是将研究对象离散成单元的过程,二维/三维网格主要包括5个几何要素:(1)Cell:单元体,离散化后的计算域网格所确定。;(2)Face:面,Cell的边界;(3)Edge:边,Face的边界;(4)Node:节点,Edge的交汇处/网格点;(5)Zone:区域,一组节点、面和(或者)单元体。边界条件数据存储在Face中,材料数据和源项存储在Zone的Cell中网格形状:2D模拟中,常见的网格形状为三角形和四边形;3D模拟中,包括有四面体、六面体、棱柱形和多面体网格。结构化与非结构化网格:结构化网格是指网格区域内所有内部点都具有相同的毗邻单元,意味着每个点都有相同数目的邻点。结构化网格的优势在于:区域边界拟合容易实现、网格生成速度快、数据结构简单、网格质量好。其不足在于适用范围较窄,对复杂几何模型划分难度高。非结构化网格是指网格区域的内部点不具有相同的毗邻单元,也就是说区域内不同内部点相连的网格数目不同。非结构化网格对于复杂几何模型的网格生成比较友好。网格类型选取网格类型的选取需要考虑三方面:网格划分时间、计算量以及精确度。网格划分时间:对于简单的几何体,无论是结构化网格还是非结构化网格,其划分时间都不是太长。对于复杂的几何体,划分分块结构网格非常耗时,因此对于复杂几何体,使用非结构化网格将大大减少网格划分时间。计算量:对于复杂几何体,相比于四边形或六面体网格,采用三角形或四面体网格会使网格数大大减少,这是因为相比较而言,三角形/四面体网格更容易调整大小,另外将整体计算域的四面体网格转换为多面体网格也能减少总网格数。精确度:在流体计算中,容易产生数值扩散,即假扩散,假扩散是相对真实流动扩散而言,它并不是实际物理过程,而是因为数值截断误差产生的。假扩散与网格息息相关:(1)假扩散造成的影响与网格数相反,也就是说减少假扩散的措施之一是增加网格数量,细化网格;(2)所有数值求解都存在一定的假扩散,这是由于求解控制方程离散格式的截断误差造成的;(3)当真实扩散作用较小时,数值扩散影响较大;(4)当流动方向与网格正交时,数值扩散最低,这与网格选择有关。当使用三角形/四面体网格时,流动永远不会与网格正交,而使用四边形/六面体网格时,有可能使网格与流动方向垂直,但对于复杂几何,这也很难实现。网格质量一维网格评价指标:检查网格内部是否存在自由端点和刚性端点:其中自由端点主要是检查是否存在自由端点或自由节点(即与其他单元不相连)在一维单元容易出现这个问题,如质量集中单元等。刚性单元主要检查是否形成有环状的刚性单元。二维网格评价指标:二维网格的几何形状主要是三角形和四边形。主要的质量指标有:单元长度,翘曲角,单元边长比,内角大小,扭曲角,雅可比比率(Jacobianratio)。(1)单元长度比:为单元最大边长与最小边长之比,理想的单元长度比为1。单元可能需要较大的边长比,最小边放在梯度最大的地方,这是因为在一个单元内,如果某一边的梯度很大,这一边又很长,那么误差就很大。(2)内角大小:指的是三角形单元内角,即三角形三个内角的大小。(3)三角形单元扭曲角。这一指标表征了单元在单元面内的扭曲程度。定义为:对应边中点连线的夹角中最小角的余角,即三角形单元扭曲角
为中内角,见下图。另外还有一种定义:单元相邻边夹角与
之间的差值。(4)四边形单元扭曲角。该指标的定义为:对应边中点连线的夹角中最小角的余角,即四边形单元扭曲角
见下图。另外一种定义是:单元相邻边夹角与90^之间的差值。(5)四边形单元翘曲角。该指标表征了单元在单元的面外的翘曲程度,面外翘曲发生在单元面的节点不共面的时候。其定义如下:依次沿对角线将四边形分为两个三角形,寻找这两个三角形所在面构成夹角的最大值,该角即为划曲角,即
,见下图:(6)弦偏离度。即单元各边中点与各点在对应边上的投影点的距离值,见图
中的
。(7)雅可比比率。即单元内各个积分点Jocabian行列式值中的最小值与最大值之比,计算公式如下:
式中
为雅可比比率,
为最大和最小雅可比行列式值。且
三维网格评价指标:对于六面体网格的网格质量评价指标与二维大同小异,而对于四面体网格需要另外检查如下几个指标:(1)四面体单元埋塌(collapse)值,其计算公式如下:式中,
为各个顶点到对应面的距离值;
为对应面的面积;sqrt(・)为取平方根运算的函数。(2)四面体单元的体积扭曲(skew)值。对于任意一个四面体单元,定义一个过该四面体四个顶点的外接球体,如下图所示,再依照球体的半径,计算出一个理想四面体的体积,该体积假定为
,
实际四面体单元的体积为
,参照理想四面体的体积,按照下面公式计
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 风险隐患排查治理工作计划三篇
- 广东交通职业技术学院
- 务工合同证明模板(3篇)
- 20XX年装饰公司年终总结报告
- 统筹合同模板(3篇)
- 2026国家保安员资格考试题库及参考答案一套
- 2025广东深圳大学师范学院附属中学急聘初中语文教师1人(公共基础知识)测试题附答案
- 2023年安庆市直机关遴选公务员笔试真题汇编附答案解析(夺冠)
- 2026年低压电工操作证理论全国考试题库(综合卷)
- 2026年法律逻辑学试题及完整答案(各地真题)
- 医疗人员职业素养提升策略分享
- 生物安全培训班课件
- 浙江省温州市瑞安市2024-2025学年四年级上册期末考试数学试卷(解析版)
- 洗衣液宣传课件
- 儿童急性呼吸道感染病原学诊断与临床管理专家共识2026
- 缺铁性贫血并发症的预防与护理
- 2026年度安全生产工作计划参考模板
- 在线网课学习课堂《人工智能(北理 )》单元测试考核答案
- 土地承包合同(2篇)
- GB/T 14689-2008技术制图图纸幅面和格式
- 企业职工基本商务礼仪培训
评论
0/150
提交评论