版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省黄山市徽州一中2025届高三第四次模拟考试数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线x2a2-y2b2=1(a>0,b>0),其右焦点F的坐标为(c,0),点A是第一象限内双曲线渐近线上的一点,O为坐标原点,满足|OA|=A.2 B.2 C.2332.设全集,集合,,则集合()A. B. C. D.3.数列满足:,,,为其前n项和,则()A.0 B.1 C.3 D.44.一个频率分布表(样本容量为)不小心被损坏了一部分,只记得样本中数据在上的频率为,则估计样本在、内的数据个数共有()A. B. C. D.5.在三角形中,,,求()A. B. C. D.6.关于函数,下列说法正确的是()A.函数的定义域为B.函数一个递增区间为C.函数的图像关于直线对称D.将函数图像向左平移个单位可得函数的图像7.一小商贩准备用元钱在一批发市场购买甲、乙两种小商品,甲每件进价元,乙每件进价元,甲商品每卖出去件可赚元,乙商品每卖出去件可赚元.该商贩若想获取最大收益,则购买甲、乙两种商品的件数应分别为()A.甲件,乙件 B.甲件,乙件 C.甲件,乙件 D.甲件,乙件8.已知函数是定义在R上的奇函数,且满足,当时,(其中e是自然对数的底数),若,则实数a的值为()A. B.3 C. D.9.若某几何体的三视图如图所示,则该几何体的表面积为()A.240 B.264 C.274 D.28210.“学习强国”学习平台是由中宣部主管,以深入学习宣传新时代中国特色社会主义思想为主要内容,立足全体党员、面向全社会的优质平台,现日益成为老百姓了解国家动态、紧跟时代脉搏的热门。该款软件主要设有“阅读文章”、“视听学习”两个学习模块和“每日答题”、“每周答题”、“专项答题”、“挑战答题”四个答题模块。某人在学习过程中,“阅读文章”不能放首位,四个答题板块中有且仅有三个答题板块相邻的学习方法有()A.60 B.192 C.240 D.43211.已知双曲线的左、右顶点分别为,点是双曲线上与不重合的动点,若,则双曲线的离心率为()A. B. C.4 D.212.已知函数,方程有四个不同的根,记最大的根的所有取值为集合,则“函数有两个零点”是“”的().A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.设第一象限内的点(x,y)满足约束条件,若目标函数z=ax+by(a>0,b>0)的最大值为40,则+的最小值为_____.14.的角所对的边分别为,且,,若,则的值为__________.15.已知双曲线的左右焦点分别关于两渐近线对称点重合,则双曲线的离心率为_____16.已知向量,满足,,且已知向量,的夹角为,,则的最小值是__.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,长为3的线段的两端点分别在轴、轴上滑动,点为线段上的点,且满足.记点的轨迹为曲线.(1)求曲线的方程;(2)若点为曲线上的两个动点,记,判断是否存在常数使得点到直线的距离为定值?若存在,求出常数的值和这个定值;若不存在,请说明理由.18.(12分)市民小张计划贷款60万元用于购买一套商品住房,银行给小张提供了两种贷款方式.①等额本金:每月的还款额呈递减趋势,且从第二个还款月开始,每月还款额与上月还款额的差均相同;②等额本息:每个月的还款额均相同.银行规定,在贷款到账日的次月当天开始首次还款(若2019年7月7日贷款到账,则2019年8月7日首次还款).已知小张该笔贷款年限为20年,月利率为0.004.(1)若小张采取等额本金的还款方式,现已得知第一个还款月应还4900元,最后一个还款月应还2510元,试计算小张该笔贷款的总利息;(2)若小张采取等额本息的还款方式,银行规定,每月还款额不得超过家庭平均月收入的一半,已知小张家庭平均月收入为1万元,判断小张该笔贷款是否能够获批(不考虑其他因素);(3)对比两种还款方式,从经济利益的角度来考虑,小张应选择哪种还款方式.参考数据:.19.(12分)在直角坐标系中,曲线的标准方程为.以原点为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求直线的直角坐标方程;(2)若点在曲线上,点在直线上,求的最小值.20.(12分)分别为的内角的对边.已知.(1)若,求;(2)已知,当的面积取得最大值时,求的周长.21.(12分)已知函数,设的最小值为m.(1)求m的值;(2)是否存在实数a,b,使得,?并说明理由.22.(10分)已知集合,,,将的所有子集任意排列,得到一个有序集合组,其中.记集合中元素的个数为,,,规定空集中元素的个数为.当时,求的值;利用数学归纳法证明:不论为何值,总存在有序集合组,满足任意,,都有.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
计算得到Ac,bca【详解】双曲线的一条渐近线方程为y=bax,A故Ac,bca,Fc,0,故Mc,故选:C.【点睛】本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力.2、C【解析】∵集合,,∴点睛:本题是道易错题,看清所问问题求并集而不是交集.3、D【解析】
用去换中的n,得,相加即可找到数列的周期,再利用计算.【详解】由已知,①,所以②,①+②,得,从而,数列是以6为周期的周期数列,且前6项分别为1,2,1,-1,-2,-1,所以,.故选:D.【点睛】本题考查周期数列的应用,在求时,先算出一个周期的和即,再将表示成即可,本题是一道中档题.4、B【解析】
计算出样本在的数据个数,再减去样本在的数据个数即可得出结果.【详解】由题意可知,样本在的数据个数为,样本在的数据个数为,因此,样本在、内的数据个数为.故选:B.【点睛】本题考查利用频数分布表计算频数,要理解频数、样本容量与频率三者之间的关系,考查计算能力,属于基础题.5、A【解析】
利用正弦定理边角互化思想结合余弦定理可求得角的值,再利用正弦定理可求得的值.【详解】,由正弦定理得,整理得,由余弦定理得,,.由正弦定理得.故选:A.【点睛】本题考查利用正弦定理求值,涉及正弦定理边角互化思想以及余弦定理的应用,考查计算能力,属于中等题.6、B【解析】
化简到,根据定义域排除,计算单调性知正确,得到答案.【详解】,故函数的定义域为,故错误;当时,,函数单调递增,故正确;当,关于的对称的直线为不在定义域内,故错误.平移得到的函数定义域为,故不可能为,错误.故选:.【点睛】本题考查了三角恒等变换,三角函数单调性,定义域,对称,三角函数平移,意在考查学生的综合应用能力.7、D【解析】
由题意列出约束条件和目标函数,数形结合即可解决.【详解】设购买甲、乙两种商品的件数应分别,利润为元,由题意,画出可行域如图所示,显然当经过时,最大.故选:D.【点睛】本题考查线性目标函数的线性规划问题,解决此类问题要注意判断,是否是整数,是否是非负数,并准确的画出可行域,本题是一道基础题.8、B【解析】
根据题意,求得函数周期,利用周期性和函数值,即可求得.【详解】由已知可知,,所以函数是一个以4为周期的周期函数,所以,解得,故选:B.【点睛】本题考查函数周期的求解,涉及对数运算,属综合基础题.9、B【解析】
将三视图还原成几何体,然后分别求出各个面的面积,得到答案.【详解】由三视图可得,该几何体的直观图如图所示,延长交于点,其中,,,所以表面积.故选B项.【点睛】本题考查三视图还原几何体,求组合体的表面积,属于中档题10、C【解析】
四个答题板块中选三个捆绑在一起,和另外一个答题板块用插入法.注意按“阅读文章”分类.【详解】四个答题板块中选三个捆绑在一起,和另外一个答题板块用插入法,由于“阅读文章”不能放首位,因此不同的方法数为.故选:C.【点睛】本题考查排列组合的应用,考查捆绑法和插入法求解排列问题.对相邻问题用捆绑法,不相邻问题用插入法是解决这类问题的常用方法.11、D【解析】
设,,,根据可得①,再根据又②,由①②可得,化简可得,即可求出离心率.【详解】解:设,,,∵,∴,即,①又,②,由①②可得,∵,∴,∴,∴,即,故选:D.【点睛】本题考查双曲线的方程和性质,考查了斜率的计算,离心率的求法,属于基础题和易错题.12、A【解析】
作出函数的图象,得到,把函数有零点转化为与在(2,4]上有交点,利用导数求出切线斜率,即可求得的取值范围,再根据充分、必要条件的定义即可判断.【详解】作出函数的图象如图,由图可知,,函数有2个零点,即有两个不同的根,也就是与在上有2个交点,则的最小值为;设过原点的直线与的切点为,斜率为,则切线方程为,把代入,可得,即,∴切线斜率为,∴k的取值范围是,∴函数有两个零点”是“”的充分不必要条件,故选A.【点睛】本题主要考查了函数零点的判定,考查数学转化思想方法与数形结合的解题思想方法,训练了利用导数研究过曲线上某点处的切线方程,试题有一定的综合性,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】不等式表示的平面区域阴影部分,当直线ax+by=z(a>0,b>0)过直线x−y+2=0与直线2x−y−6=0的交点(8,10)时,目标函数z=ax+by(a>0,b>0)取得最大40,即8a+10b=40,即4a+5b=20,而当且仅当时取等号,则的最小值为.14、【解析】
先利用余弦定理求出,再用正弦定理求出并把转化为与边有关的等式,结合可求的值.【详解】因为,故,因为,所以.由正弦定理可得三角形外接圆的半径满足,所以即.因为,解得或(舍).故答案为:.【点睛】本题考查正弦定理、余弦定理在解三角形中的应用,注意结合求解目标对所得的方程组变形整合后整体求解,本题属于中档题.15、【解析】
双曲线的左右焦点分别关于两条渐近线的对称点重合,可得一条渐近线的斜率为1,即,即可求出双曲线的离心率.【详解】解:双曲线的左右焦点分别关于两条渐近线的对称点重合,一条渐近线的斜率为1,即,,,故答案为:.【点睛】本题考查双曲线的离心率,考查学生的计算能力,确定一条渐近线的斜率为1是关键,属于基础题.16、【解析】
求的最小值可以转化为求以AB为直径的圆到点O的最小距离,由此即可得到本题答案.【详解】如图所示,设,由题,得,又,所以,则点C在以AB为直径的圆上,取AB的中点为M,则,设以AB为直径的圆与线段OM的交点为E,则的最小值是,因为,又,所以的最小值是.故答案为:【点睛】本题主要考查向量的综合应用问题,涉及到圆的相关知识与余弦定理,考查学生的分析问题和解决问题的能力,体现了数形结合的数学思想.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)存在;常数,定值【解析】
(1)设出的坐标,利用以及,求得曲线的方程.(2)当直线的斜率存在时,设出直线的方程,求得到直线的距离.联立直线的方程和曲线的方程,写出根与系数关系,结合以及为定值,求得的值.当直线的斜率不存在时,验证.由此得到存在常数,且定值.【详解】(1)解析:(1)设,,由题可得,解得又,即,消去得:(2)当直线的斜率存在时,设直线的方程为设,由可得:由点到的距离为定值可得(为常数)即得:即,又为定值时,,此时,且符合当直线的斜率不存在时,设直线方程为由题可得,时,,经检验,符合条件综上可知,存在常数,且定值【点睛】本小题主要考查轨迹方程的求法,考查直线和椭圆的位置关系,考查运算求解能力,考查椭圆中的定值问题,属于难题.18、(1)289200元;(2)能够获批;(3)应选择等额本金还款方式【解析】
(1)由题意可知,等额本金还款方式中,每月的还款额构成一个等差数列,即可由等差数列的前n项和公式求得其还款总额,减去本金即为还款的利息;(2)根据题意,采取等额本息的还款方式,每月还款额为一等比数列,设小张每月还款额为元,由等比数列求和公式及参考数据,即可求得其还款额,与收入的一半比较即可判断;(3)计算出等额本息还款方式时所付出的总利息,两个利息比较即可判断.【详解】(1)由题意可知,等额本金还款方式中,每月的还款额构成一个等差数列,记为,表示数列的前项和,则,,则,故小张该笔贷款的总利息为元.(2)设小张每月还款额为元,采取等额本息的还款方式,每月还款额为一等比数列,则,所以,即,因为,所以小张该笔贷款能够获批.(3)小张采取等额本息贷款方式的总利息为:,因为,所以从经济利益的角度来考虑,小张应选择等额本金还款方式.【点睛】本题考查了等差数列与等比数列求和公式的综合应用,数列在实际问题中的应用,理解题意是解决问题的关键,属于中档题.19、(1)(2)【解析】
(1)直接利用极坐标公式计算得到答案(2)设,,根据三角函数的有界性得到答案.【详解】(1)因为,所以,因为所以直线的直角坐标方程为.(2)由题意可设,则点到直线的距离.因为,所以,因为,故的最小值为.【点睛】本题考查了极坐标方程,参数方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年河北省高三一模高考地理模拟试卷试题(含答案详解)
- 等差数列前n项和()课件-高二上学期数学人教A版选择性-1
- Unit3Weletoourschool!Integration课件译林版七年级英语上册
- 安全护栏租赁合同范本
- 工厂直销鞋业合同范本
- 承包石山开采合同范本
- 学校部室改造合同范本
- 高二英语(人教版)试题选择性必修二UNIT4课时检测(二)“ReadingandThinking”的新知学习环节
- 小鹏购车协议合同模板
- 建筑公司招标合同范本
- 膀胱切除术后状态的护理
- 2025年国家开放大学(电大)《法学导论》期末考试复习题库及答案解析
- XJJ 088-2018(2019年版) 建设工程监理工作规程
- 《JJG 1081.2-2024铁路机车车辆轮径量具检定规程第2部分:轮径测量器》 解读
- YY/T 1488-2025中医器械舌象信息采集设备
- 2025-2030中国食品保鲜技术市场现状与创新趋势预测报告
- 2024人教版八年级生物上册全册教案
- 2025秋期版国开电大本科《心理学》一平台形成性考核练习1至6在线形考试题及答案
- 第13章传染病及其预防(复习课件)生物北师大版2024八年级上册
- 供电公司一把手讲安全课
- 解读手术室护理实践指南
评论
0/150
提交评论