版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第PAGE"pagenumber"pagenumber页,共NUMPAGES"numberofpages"numberofpages页第PAGE"pagenumber"pagenumber页,共NUMPAGES"numberofpages"numberofpages页安徽省六安市新世纪学校2024−2025学年高二B班上学期1月期末考试数学试题一、单选题(本大题共8小题)1.问题:①某社区有500个家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户,为了了解社会购买力的某项指标,要从中抽出一个容量为100户的样本;②从10名学生中抽出3人参加座谈会,方法:Ⅰ简单随机抽样法;Ⅱ分层抽样法.则问题与方法配对正确的是(
)A.①Ⅰ②Ⅱ B.①Ⅰ②Ⅰ C.①Ⅱ②Ⅰ D.①Ⅱ②Ⅱ2.直线的倾斜角是(
)A. B. C. D.3.已知表示两条不同的直线,表示一个平面,给出下列四个命题:①;②;③;④.其中正确命题的序号是A.①② B.②③ C.②④ D.①④4.已知圆锥的侧面展开图是面积为的半圆,则该圆锥的体积是(
)A. B. C. D.5.如图所示,矩形是水平放置的一个平面图形的直观图,其中,,则原图形是(
)
A.面积为的矩形 B.面积为的矩形C.面积为的菱形 D.面积为的菱形6.某校组织1000名学生参加纪念红军长征90周年知识竞赛,经统计这1000名学生的成绩都在区间内,按分数分成5组:,得到如图所示的频率分布直方图、根据图中数据,下列结论错误的是(
)A.成绩在上的人数最少B.成绩不低于80分的学生所占比例为50%C.用分层抽样从该校学生中抽取容量为100的样本,则应在内抽取30人D.这1000名学生成绩的平均分小于第50百分位数7.如图,直三棱柱ABCA1B1C1的六个顶点都在半径为2的半球面上,AB=AC,侧面BCC1B1是半球底面圆的内接正方形,则侧面ABB1A1的面积为(
)A. B. C.1 D.28.在下列关于概率的命题中,正确的是(
)A.若事件、满足,则、为对立事件B.若三个事件、、两两独立,则C.若事件、满足,,,则、相互独立D.若事件与是互斥事件,则与也是互斥事件二、多选题(本大题共3小题)9.下列事件是随机事件的是(
)A.连续掷一枚硬币两次,两次都出现正面朝上 B.异性电荷相互吸引C.在标准大气压下,水在1℃结冰 D.买一注彩票中了特等奖E.掷一次骰子,向上的一面的点数是610.要考查某种品牌的850颗种子的发芽率,从中抽取50颗种子进行实验,利用随机数表法抽取种子,先将850颗种子按001,002,…,850进行编号,如果从随机数表第2行第2列的数开始并向右读,下列选项中属于最先检验的4颗种子中一个的是________.(下面抽取了随机数表第1行至第3行)()034743738636964736614698637162332616804560111410959774946774428114572042533237322707360751245179897316766227665650267107329079785313553858598897541410A.774 B.946 C.428 D.57211.在直三棱柱中,,,分别是的中点,在线段上,则下面说法中正确的有(
)A.平面B.若是上的中点,则C.直线与平面所成角的正弦值为D.直线与直线所成角最小时,线段长为三、填空题(本大题共3小题)12.学校从名男同学和名女同学中任选人参加志愿者服务活动,则选出的人中至少有名女同学的概率为(结果用数值表示).13.直线与直线垂直,则实数.14.如图,正方体的棱长为2,E是侧棱的中点,则平面截正方体所得的截面图形的周长是.四、解答题(本大题共5小题)15.甲、乙两人独立地参加本次普通高中化学学业水平合格性考试,他们的考试成绩互不影响.甲的化学成绩得满分的概率为,乙的化学成绩得满分的概率为.(1)求甲、乙两人的化学成绩都得满分的概率;(2)求甲、乙两人至少有一人的化学成绩没有得满分的概率.16.已知顶点,,.(1)求边BC上的高所在直线的方程;(2)若直线l过点A,且l的纵截距是横截距的2倍,求直线l的方程.17.上周某校高三年级学生参加了数学测试,年级组织任课教师对这次考试进行成绩分析.现从中随机选取了40名学生的成绩作为样本,已知这40名学生的成绩全部在40分至100分之间,现将成绩按如下方式分成6组:第一组;第二组;……;第六组,并据此绘制了如图所示的频率分布直方图.(1)估计这次月考数学成绩的平均分和众数和35分位数;(2)从成绩大于等于80分的学生中随机选2名,求至少有1名学生的成绩在区间内的概率.18.已知四棱锥的底面是梯形,底面,且,.(1)求证:平面;(2)求点C到平面的距离;(3)求直线与平面所成角的正弦值.19.某企业招聘员工,指定“英语听说”、“信息技术”、“逻辑推理”作为三门考试课程,有两种考试方案.方案一:参加三门课程的考试,至少有两门及格为通过;方案二:在三门课程中,随机选取两门,并参加这两门课程的考试,两门都及格为通过.假设某应聘者参加三门指定课程考试及格的概率分别是.,且三门课程考试是否及格相互之间没有影响.(1)分别求该应聘者选方案一考试通过的概率和选方案二考试通过的概率;(2)试比较该应聘者在上述两种方案下考试通过的概率的大小,并说明理由.
参考答案1.【答案】C【分析】利用随机抽样方法求解.【详解】解:根据①中由于小区中各个家庭收入水平之间存在明显差别,故①要采用分层抽样的方法,②中从10名同学中抽取3个参加座谈会,总体容量和样本容量均不大,要采用简单随机抽样的方法.故选:.2.【答案】D【详解】由题意可知,直线,即,可知直线l的斜率,设直线l的倾斜角为,则,所以.故选D.3.【答案】D【详解】①⇒m∥n,根据线面垂直的性质定理:垂直于同一平面的两直线平行,故①正确.②⇒n∥α,由m⊥α,m⊥n得n∥α或n⊂α,故②不正确.③⇒m∥n,由m∥α,n∥α,则m,n可能平行、可能相交、可能异面.故③不正确.④,则m,n可能相交、可能异面,根据异面直线所成的角,可知m⊥n.故④正确.故选D.4.【答案】A【详解】设圆锥底面圆半径为,母线为,高为.由题意得,解得,,该圆锥的体积是.故选:A.5.【答案】C【详解】,所以,故在原图中,,,所以四边形为菱形(如图所示),,则原图形面积为.
故选:C.6.【答案】C【详解】对于A,这一组频率最小,即成绩在上的人数最少,A正确;对于B,成绩不低于80分的学生频率为,成绩不低于80分的学生所占比例为,B正确;对于C,根据分层抽样特点得,则应在内抽取人,C错误;对于D,根据频率分布直方图,得1000名学生成绩的平均数是,而1000名学生成绩的第50百分位数即中位数为80,因此1000名学生成绩的平均分小于中位数,D正确.故选:C7.【答案】A【详解】由题意知,球心在侧面的中心上,为截面圆的直径,,的外接圆圆心是的中点,同理的外心是的中点.设正方形的边长为,在中,,,(R为球的半径),∴,即,则,.故选A.考点:空间点、线、面的位置关系.8.【答案】C【详解】对于A选项,若事件、不互斥,但是恰好,满足,但是、不是对立事件.故A错误;对于B选项,设样本空间含有等可能的样本点,且,,,可求得,,,所以,,,即、、两两独立,但,所以,故B错误;对于C选项,因为事件、满足,,,所以,所以、相互独立,故C正确;对于D选项,若事件与是互斥事件,不妨设与对立,则,此时,与是同一事件,故D错误.故选:C.9.【答案】ADE【解析】根据随机事件的定义,进行判断,即可得答案.【详解】根据题意得:A,D,E是随机事件,B为必然事件,C为不可能事件.故选:ADE.10.【答案】ACD【分析】依据题意结合随机数表法直接读数并满足号码不大于850即可.【详解】依据题意可知:向右读数依次为:774,946,774,428,114,572,042,533,…所以最先检验的4颗种子符合条件的为:774,428,114,572故选:ACD【点睛】本题考查简单随机抽样中的随机数表法,掌握读数的方法,属基础题.11.【答案】ACD【详解】由题意可得,,,,,,,设,,,直三棱柱中,,可得为平面的一个法向量,为平面的一个法向量,对于A,,,即,又平面,所以平面,故A正确;对于B,若是上的中点,则,所以,所以与不垂直,故B不正确;对于C,由为平面的一个法向量,,设直线与平面所成角为,则,故C正确;对于D,设,则,当时,即时,取最大值,即直线与直线所成角最小,此时,,故D正确.故选:ACD12.【答案】【详解】解:学校从3名男同学和2名女同学中任选2人参加志愿者服务活动,基本事件总数n10.选出的2人中至少有1名女同学包含的基本事件个数m7,则选出的2人中至少有1名女同学的概率为p.故答案为.13.【答案】【详解】由于,所以.故答案为:14.【答案】【详解】为中点,连接,正方体中,,,则四边形为平行四边形,有,,为中点,是的中点,则,得,则平面截正方体所得的截面图形为梯形,其中,,,则梯形的周长为即所得的截面图形的周长是故答案为:15.【答案】(1)(2)【详解】(1)由题意,甲、乙两人的化学成绩都得满分的概率为.(2)由题意,甲、乙两人至少有一人的化学成绩没有得满分的概率为.16.【答案】(1)(2)或【详解】(1)由、,且,所以其高线斜率满足,即,所以边BC的高所在直线的方程为,即;(2)当直线过坐标原点时,,此时直线,符合题意;当直线不过坐标原点时,由题意设直线方程为,由过点,则,解得,所以直线方程为,即,综上所述,直线的方程为或.17.【答案】(1)68,65,;(2).【详解】(1)解:因各组的频率之和为1,所以成绩在区间内的频率;所以平均分;众数的估计值是;设分位数为,因为的频率为,的频率为,的频率为,所以,所以,解得;(2)解:设表示事件“在成绩大于等于80分的学生中随机选2名,至少有1名学生的成绩在区间内”,由题意可知成绩在区间内的学生所选取的有:人,记这4名学生分别为;成绩在区间内的学生有人,记这2名学生分别为;则从这6人中任选2人的基本事件为:,,共15种,事件“至少有1名学生的成绩在区间内”的可能结果为:,,共9种,所以.故所求事件的概率为:.18.【答案】(1)证明见解析(2)(3)【详解】(1)连接与BD交于点,连接因为,所以.又,故,所以又不在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高山避雷施工方案(3篇)
- 童装十一活动策划方案(3篇)
- 拱形钢管施工方案(3篇)
- 水泵电气施工方案(3篇)
- 2025年高职小学教育(教育法律法规应用)试题及答案
- 2025年大学氢能科学与工程(氢能利用)试题及答案
- 2025年中职机电设备(机电设备安装工艺)试题及答案
- 2025年大学本科(测绘工程技术)工程测绘实操综合测试题及答案
- 2025年大学一年级(计算机科学与技术)程序设计基础试题及答案
- 2025年大学服装与服饰设计(服装与服饰设计学)试题及答案
- 新教材高中数学第八章立体几何初步8.4.1平面课件
- 智慧农业中的智能灌溉技术
- 瑜伽店长培训方案
- 干部履历表(中共中央组织部2015年制)
- 牵引供电系统短路计算-牵引供电系统短路计算(高铁牵引供电系统)
- 标识牌单元工程施工质量验收评定表
- QSB知识培训资料重点
- 安全库存基准表
- (37)-24.1.4黄芪中药中医学课件
- 高中生物竞赛课件:蛋白质的性质与分离、分析技术
- 刑法学(上册)马工程课件 第1章 刑法概说
评论
0/150
提交评论