河北省鹿泉一中、元氏一中、正定一中等五校2025届高三下学期期末教学统一检测试题数学试题试卷_第1页
河北省鹿泉一中、元氏一中、正定一中等五校2025届高三下学期期末教学统一检测试题数学试题试卷_第2页
河北省鹿泉一中、元氏一中、正定一中等五校2025届高三下学期期末教学统一检测试题数学试题试卷_第3页
河北省鹿泉一中、元氏一中、正定一中等五校2025届高三下学期期末教学统一检测试题数学试题试卷_第4页
河北省鹿泉一中、元氏一中、正定一中等五校2025届高三下学期期末教学统一检测试题数学试题试卷_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省鹿泉一中、元氏一中、正定一中等五校2025届高三下学期期末教学统一检测试题数学试题试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图示,三棱锥的底面是等腰直角三角形,,且,,则与面所成角的正弦值等于()A. B. C. D.2.若,则函数在区间内单调递增的概率是()A.B.C.D.3.对于定义在上的函数,若下列说法中有且仅有一个是错误的,则错误的一个是()A.在上是减函数 B.在上是增函数C.不是函数的最小值 D.对于,都有4.函数的图象可能为()A. B.C. D.5.已知平面向量,,满足:,,则的最小值为()A.5 B.6 C.7 D.86.设复数满足,则()A. B. C. D.7.阅读名著,品味人生,是中华民族的优良传统.学生李华计划在高一年级每周星期一至星期五的每天阅读半个小时中国四大名著:《红楼梦》、《三国演义》、《水浒传》及《西游记》,其中每天阅读一种,每种至少阅读一次,则每周不同的阅读计划共有()A.120种 B.240种 C.480种 D.600种8.函数的图象大致是()A. B.C. D.9.已知椭圆的右焦点为F,左顶点为A,点P椭圆上,且,若,则椭圆的离心率为()A. B. C. D.10.有一圆柱状有盖铁皮桶(铁皮厚度忽略不计),底面直径为cm,高度为cm,现往里面装直径为cm的球,在能盖住盖子的情况下,最多能装()(附:)A.个 B.个 C.个 D.个11.《九章算术》中将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图,则它的外接球的表面积为()A.4π B.8π C. D.12.在区间上随机取一个数,使直线与圆相交的概率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知某几何体的三视图如图所示,则该几何体外接球的表面积是______.14.在平面直角坐标系中,点在单位圆上,设,且.若,则的值为________________.15.若函数为偶函数,则.16.设为数列的前项和,若,,且,,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知奇函数的定义域为,且当时,.(1)求函数的解析式;(2)记函数,若函数有3个零点,求实数的取值范围.18.(12分)设函数.(1)若,时,在上单调递减,求的取值范围;(2)若,,,求证:当时,.19.(12分)如图所示的几何体中,,四边形为正方形,四边形为梯形,,,,为中点.(1)证明:;(2)求二面角的余弦值.20.(12分)椭圆:()的离心率为,它的四个顶点构成的四边形面积为.(1)求椭圆的方程;(2)设是直线上任意一点,过点作圆的两条切线,切点分别为,,求证:直线恒过一个定点.21.(12分)已知.(1)解不等式;(2)若均为正数,且,求的最小值.22.(10分)在中,,是边上一点,且,.(1)求的长;(2)若的面积为14,求的长.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】

首先找出与面所成角,根据所成角所在三角形利用余弦定理求出所成角的余弦值,再根据同角三角函数关系求出所成角的正弦值.【详解】由题知是等腰直角三角形且,是等边三角形,设中点为,连接,,可知,,同时易知,,所以面,故即为与面所成角,有,故.故选:A.【点睛】本题主要考查了空间几何题中线面夹角的计算,属于基础题.2.B【解析】函数在区间内单调递增,,在恒成立,在恒成立,,函数在区间内单调递增的概率是,故选B.3.B【解析】

根据函数对称性和单调性的关系,进行判断即可.【详解】由得关于对称,若关于对称,则函数在上不可能是单调的,故错误的可能是或者是,若错误,则在,上是减函数,在在上是增函数,则为函数的最小值,与矛盾,此时也错误,不满足条件.故错误的是,故选:.【点睛】本题主要考查函数性质的综合应用,结合对称性和单调性的关系是解决本题的关键.4.C【解析】

先根据是奇函数,排除A,B,再取特殊值验证求解.【详解】因为,所以是奇函数,故排除A,B,又,故选:C【点睛】本题主要考查函数的图象,还考查了理解辨析的能力,属于基础题.5.B【解析】

建立平面直角坐标系,将已知条件转化为所设未知量的关系式,再将的最小值转化为用该关系式表达的算式,利用基本不等式求得最小值.【详解】建立平面直角坐标系如下图所示,设,,且,由于,所以..所以,即..当且仅当时取得最小值,此时由得,当时,有最小值为,即,,解得.所以当且仅当时有最小值为.故选:B【点睛】本小题主要考查向量的位置关系、向量的模,考查基本不等式的运用,考查数形结合的数学思想方法,属于难题.6.D【解析】

根据复数运算,即可容易求得结果.【详解】.故选:D.【点睛】本题考查复数的四则运算,属基础题.7.B【解析】

首先将五天进行分组,再对名著进行分配,根据分步乘法计数原理求得结果.【详解】将周一至周五分为组,每组至少天,共有:种分组方法;将四大名著安排到组中,每组种名著,共有:种分配方法;由分步乘法计数原理可得不同的阅读计划共有:种本题正确选项:【点睛】本题考查排列组合中的分组分配问题,涉及到分步乘法计数原理的应用,易错点是忽略分组中涉及到的平均分组问题.8.A【解析】

根据复合函数的单调性,同增异减以及采用排除法,可得结果.【详解】当时,,由在递增,所以在递增又是增函数,所以在递增,故排除B、C当时,若,则所以在递减,而是增函数所以在递减,所以A正确,D错误故选:A【点睛】本题考查具体函数的大致图象的判断,关键在于对复合函数单调性的理解,记住常用的结论:增+增=增,增-减=增,减+减=减,复合函数单调性同增异减,属中档题.9.C【解析】

不妨设在第一象限,故,根据得到,解得答案.【详解】不妨设在第一象限,故,,即,即,解得,(舍去).故选:.【点睛】本题考查了椭圆的离心率,意在考查学生的计算能力.10.C【解析】

计算球心连线形成的正四面体相对棱的距离为cm,得到最上层球面上的点距离桶底最远为cm,得到不等式,计算得到答案.【详解】由题意,若要装更多的球,需要让球和铁皮桶侧面相切,且相邻四个球两两相切,这样,相邻的四个球的球心连线构成棱长为cm的正面体,易求正四面体相对棱的距离为cm,每装两个球称为“一层”,这样装层球,则最上层球面上的点距离桶底最远为cm,若想要盖上盖子,则需要满足,解得,所以最多可以装层球,即最多可以装个球.故选:【点睛】本题考查了圆柱和球的综合问题,意在考查学生的空间想象能力和计算能力.11.B【解析】

由三视图判断出原图,将几何体补形为长方体,由此计算出几何体外接球的直径,进而求得球的表面积.【详解】根据题意和三视图知几何体是一个底面为直角三角形的直三棱柱,底面直角三角形的斜边为2,侧棱长为2且与底面垂直,因为直三棱柱可以复原成一个长方体,该长方体外接球就是该三棱柱的外接球,长方体对角线就是外接球直径,则,那么.故选:B【点睛】本小题主要考查三视图还原原图,考查几何体外接球的有关计算,属于基础题.12.C【解析】

根据直线与圆相交,可求出k的取值范围,根据几何概型可求出相交的概率.【详解】因为圆心,半径,直线与圆相交,所以,解得所以相交的概率,故选C.【点睛】本题主要考查了直线与圆的位置关系,几何概型,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

先由三视图在长方体中将其还原成直观图,再利用球的直径是长方体体对角线即可解决.【详解】由三视图知该几何体是一个三棱锥,如图所示长方体对角线长为,所以三棱锥外接球半径为,故所求外接球的表面积.故答案为:.【点睛】本题考查几何体三视图以及几何体外接球的表面积,考查学生空间想象能力以及基本计算能力,是一道基础题.14.【解析】

根据三角函数定义表示出,由同角三角函数关系式结合求得,而,展开后即可由余弦差角公式求得的值.【详解】点在单位圆上,设,由三角函数定义可知,因为,则,所以由同角三角函数关系式可得,所以故答案为:.【点睛】本题考查了三角函数定义,同角三角函数关系式的应用,余弦差角公式的应用,属于中档题.15.1【解析】试题分析:由函数为偶函数函数为奇函数,.考点:函数的奇偶性.【方法点晴】本题考查导函数的奇偶性以及逻辑思维能力、等价转化能力、运算求解能力、特殊与一般思想、数形结合思想与转化思想,具有一定的综合性和灵活性,属于较难题型.首先利用转化思想,将函数为偶函数转化为函数为奇函数,然后再利用特殊与一般思想,取.16.【解析】

由题可得,解得,所以,,上述两式相减可得,即,因为,所以,即,所以数列是以为首项,为公差的等差数列,所以.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)【解析】

(1)根据奇函数定义,可知;令则,结合奇函数定义即可求得时的解析式,进而得函数的解析式;(2)根据零点定义,可得,由函数图像分析可知曲线与直线在第三象限必1个交点,因而需在第一象限有2个交点,将与联立,由判别式及两根之和大于0,即可求得的取值范围.【详解】(1)因为函数为奇函数,且,故;当时,,,则;故.(2)令,解得,画出函数关系如下图所示,要使曲线与直线有3个交点,则2个交点在第一象限,1个交点在第三象限,联立,化简可得,令,即,解得,所以实数的取值范围为.【点睛】本题考查了根据函数奇偶性求解析式,分段函数图像画法,由函数零点个数求参数的取值范围应用,数形结合的应用,属于中档题.18.(1)(2)见解析【解析】

(1)在上单调递减等价于在恒成立,分离参数即可解决.(2)先对求导,化简后根据零点存在性定理判断唯一零点所在区间,构造函数利用基本不等式求解即可.【详解】(1),时,,,∵在上单调递减.∴,.令,,时,;时,,∴在上为减函数,在上为增函数.∴,∴.∴的取值范围为.(2)若,,时,,,令,显然在上为增函数.又,,∴有唯一零点.且,时,,;时,,,∴在上为增函数,在上为减函数.∴.又,∴,,.∴.,.∴当时,.【点睛】此题考查函数定区间上单调,和零点存在性定理等知识点,难点为找到最值后的构造函数求值域,属于较难题目.19.(1)见解析;(2)【解析】

(1)取的中点,结合三角形中位线和长度关系,为平行四边形,进而得到,根据线面平行判定定理可证得结论;(2)以,,为,,轴建立空间直角坐标系,分别求得两面的法向量,求得法向量夹角的余弦值;根据二面角为锐角确定最终二面角的余弦值;【详解】(1)取的中点,连结,因为为中点,,,所以,,∴为平行四边形,所以,又因为,所以;(2)由题及(1)易知,,两两垂直,所以以,,为,,轴建立空间直角坐标系,则,,,,,,易知面的法向量为设面的法向量为则可得所以,如图可知二面角为锐角,所以余弦值为【点睛】本题考查立体几何中直线与平面平行关系的证明、空间向量法求解二面角,正确求解法向量是解题的关键,属于中档题.20.(1);(2)证明见解析.【解析】

(1)根据椭圆的基本性质列出方程组,即可得出椭圆方程;(2)设点,,,由,,结合斜率公式化简得出,,即,满足,由的任意性,得出直线恒过一个定点.【详解】(1)依题意得,解得即椭圆:;(2)设点,,其中,由,得,即,注意到,于是,因此,满足由的任意性知,,,即直线恒过一个定点.【点睛】本题主要考查了求椭圆的方程,直线过定点问题,属于中档题.21.(1);(2)【解析】

(1)利用零点分段讨论法可求不等式的解.(2)利用柯西不等式可求的最小值.【详解】(1),由得或或,解得.(2),所以,由柯西不等式得:所以,即(当且仅当时取“=”).所以的最小值为.【点睛】本题考查绝对值不等式的解法以及利用柯西不等式求最值.解绝对值不等式的基本方法有零点分段讨论法、图象法、平方法等,利用零点分段讨论法时注意分类点的合理选择,利用平方去掉绝对值符号时注意代数式的正负,而利用图象法求解时注意图象的正确刻画.利用柯西不等式求最值时注意把原代数式配成平方和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论