




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年中考数学真题专题分类精选汇
专题16三角形及其全等
一、选择题
1.(2024福建省)在同一平面内,将直尺、含30°角的三角尺和木工角尺(CDLDE)按如图方
式摆放,若AB"CD,则N1的大小为()
A.30°B.45°C.60°D.75°
【答案】A
【解析】本题考查了平行线的性质,虫AB"CD,可得NCD5=60°,即可求解.
•/ABHCD,
:.ZCDB=60°,
:CD上DE,则NC£>£=90。,
Zl=180°-ZCDB-ZCDE=30°,
故选:A.
2.(2024黑龙江齐齐哈尔)将一个含30°角的三角尺和直尺如图放置,若Nl=50。,则N2的度数
是()
A.30°B,40°C.50°D.60°
【答案】B
【解析】本题考查了对顶角的性质,三角形内角和定理.根据对顶角相等和三角形的内角和定理,即
可求解.
如图所示,
由题意得/3=/l=50°,Z5=90°,N2=/4,
Z2=Z4=180°-90°-Z3=90°-50°=40°,
故选:B.
3.(2024内蒙古赤峰)等腰三角形的两边长分别是方程x2-10x+21=0的两个根,则这个三角形的
周长为()
A.17或13B.13或21C.17D.13
【答案】C
【解析】本题考查了解一元二次方程,等腰三角形的定义,三角形的三边关系及周长,由方程可得
西=3,%=7,根据三角形的三边关系可得等腰三角形的底边长为3,腰长为7,进而即可求出三
角形的周长,掌握等腰三角形的定义及三角形的三边关系是解题的关键.
【详解】解:由方程V-10x+21=0得,玉=3,x2=7,
3+3<7,
...等腰三角形的底边长为3,腰长为7,
这个三角形的周长为3+7+7=17,
故选:C.
4.(2024云南省)己知/尸是等腰AASC底边上的高,若点尸到直线N5的距离为3,则点尸
到直线ZC的距离为()
37
A.—B.2C.3D.一
22
【答案】C
【解析】本题考查了等腰三角形的性质,角平分线的性质定理,熟练掌握知识点是解题的关键.
由等腰三角形“三线合一”得到/厂平分/A4C,再角平分线的性质定理即可求解.
如图,
V力厂是等腰底边上的高,
4F平分/B4C,
,点F到直线AB,AC的距离相等,
:点E到直线48的距离为3,
二点/到直线NC的距离为3.
故选:C.
5.(2024安徽省)在凸五边形45CDE中,AB=AE,=£>£,尸是CD的中点.下列条件中,
不能推出4r与CD一定垂直的是()
A.NABC=NAEDB.NBAF=NEAF
C.ZBCF=NEDFD.NABD=ZAEC
【答案】D
【解析】本题考查了全等三角形的判定和性质,等腰三角形“三线合一”性质的应用,熟练掌握全等
三角形的判定的方法是解题的关键.
利用全等三角形的判定及性质对各选项进行判定,结合根据等腰三角形“三线合一”的性质即可证得
结论.
【详解】解:A、连接ZC、AD,
AAACS^AADE(SAS),
AC=AD
又•..点尸为CD的中点
/.AFLCD,故不符合题意;
B、连接斯、EF,
AB=AE,NBAF=NEAF,AF=AF,
:.AABF^AEF(SAS),
/.BF=EF,ZAFB=ZAFE
又:点尸为CD的中点,
CF=DF,
•••BC=DE,
:.ACBF^ADEF(SSS),
:.ZCFB=ZDFE,
:.ZCFB+NAFB=ZDFE+NAFE=90°,
:.AFVCD,故不符合题意;
C、连接斯、EF,
:点尸为的中点,
CF=DF,
■:NBCF=4EDF,BC=DE,
:.ACBF^DEF(SAS),
BF=EF,NCFB=ZDFE,
,/AB=AE,AF=AF,
:.AABF^AAEF(SSS),
/.ZAFB=ZAFE,
/.NCFB+NAFB=ZDFE+ZAFE=90°,
AFVCD,故不符合题意;
D、ZABD=ZAEC,无法得出题干结论,符合题意;
故选:D.
6.(2024四川广安)如图,在中,点。,E分别是/C,的中点,若NZ=45°,
ZCED=70°,则ZC的度数为()
A.45°B,50°C.60°D.65°
【答案】D
【解析】本题考查了三角形中位线定理、平行线的性质定理,三角形的内角和定理,熟记性质并准确
识图是解题的关键.先证明可得NCD£=44=45。,再利用三角形的内角和定理可得
答案.
【详解】:点。,E分别是ZC,5C的中点,
DE//AB,
N4=45°,
ZCDE=ZA=45°,
•:ZCED=70°,
ZC=180°-45°-70°=65°,
故选D
二、填空题
1.(2024湖南省)一个等腰三角形的一个底角为40。,则它的顶角的度数是度.
【答案】100
【解析】本题考查了等腰三角形的性质和三角形内角和,解答时根据等腰三角形两底角相等,求出顶
角度数即可.
【详解】因为其底角为40°,所以其顶角=180。-40°x2=100°.
故答案为:100.
2.(2024重庆市B)如图,在小中,AB=AC,4=36°,平分N/5C交ZC于点。.若
BC=2,则AD的长度为
c
g------------------
【答案】2
【解析】本题主要考查了等腰三角形的性质与判定,三角形内角和定理,三角形外角的性质,先根据
等边对等角和三角形内角和定理求出NC=ZABC=72°,再由角平分线的定义得到
ZABD=ZCBD=36°,进而可证明NZ=N4&D,ZBDC=ZC,即可推出4D=BC=2.
【详解】:在中,AB=AC,44=36°,
1/BD平分NABC,
:.ZABD=ZCBD=-ZABC=36°,
2
/.NZ=ZABD,ZBDC=ZA+ZABD=72。=NC,
AD=BD,BD=BC,
:.AD=BC=2,
故答案为:2.
3.(2024四川凉山)如图,ATIBC中,NBCD=30。,ZACB=80°,CD是边N5上的高,AE
是ZCAB的平分线,则NAEB的度数是.
【解析】本题考查了三角形内角和以及外角性质、角平分线的定义.先求出N/CD=50°,结合高
的定义,得ND4c=40。,因为角平分线的定义得NC/£=20。,运用三角形的外角性质,即可作答.
【详解】•.♦/BCD=30。,ZACB=80°,
/.ZACD=50°,
1/CD是边48上的高,
ZADC=90°,
NDAC=40°,
:“E是NC45的平分线,
ZCAE=-ZDAC=2Q°,
2
ZAEB=NCAE+ZACB=20°+80°=100°.
故答案为:100°.
4.(2024四川内江)如图,在“5。中,ZDCE=40°,AE=AC,BC=BD,则N/C5的度
数为;
【答案】1000##100度
【解析】本题考查三角形的内角和定理,等腰三角形的性质,角的和差.
根据三角形的内角和可得NCD£+NCE£>=140。,根据/£=5c=5。得到
ZACE=ZAEC,/BCD=/BDC,从而N4CE+/BCD=140。,根据角的和差有
ZACB=ZACE+ZBCD-ZCDE,即可解答.
【详解】VZDCE=40°,
ZCDE+ZCED=180°-ZDCE=140°,
AE=AC,BC=BD,
:.ZACE=ZAEC,ZBCD=ZBDC,
:.ZACE+/BCD=ZCDE+ZCED=140°
ZACB=ZACE+/BCE=ZACE+ZBCD-ZCDE=140°-40°=100°.
故答案为:100°
5.(2024黑龙江绥化)如图,AB//CD,NC=33。,OC=OE.则N4=°.
【答案】66
【解析】本题考查了平行线的性质,等边对等角,三角形外角的性质,根据等边对等角可得
N£=NC=33。,根据三角形的外角的性质可得/。。£=66。,根据平行线的性质,即可求解.
【详解】:OC=OE,ZC=33°,
/E=NC=33°,
ZDOE=ZE+ZC=66°,
■:AB//CD,
:.ZA=/DOE=66°,
故答案为:66.
6.(2024四川成都市)如图,△Z5C义△(?£>£,若ND=35。,ZACB=45°,则NOCE的度
【答案】1000##100度
【解析】本题考查了三角形的内角和定理和全等三角形的性质,先利用全等三角形的性质,求出
ZCED=ZACB=45°,再利用三角形内角和求出NDCE的度数即可.
【详解】由△48C也△©£>£,40=35。,
ZCED=ZACB=45°,
•1,乙D=35°,
ZDCE=180。—/。—ZCED=180。—35°—45°=100°,
故答案为:100。
三、解答题
1.(2024云南省)如图,在和△/££)中,AB=AE,ZBAE=ACAD,AC=AD.
【答案】见解析
【解析】【分析】本题考查了全等三角形的判定和性质,熟练掌握三角形全等的判定定理是解题关键.利
用“SAS”证明A4BC咨AAED,即可解决问题.
【详解】证明:;ZBAE=ACAD,
ZBAE+ZEAC=ZCAD+ZEAC,即ABAC=ZEAD,
在AA8C和△/££>中,
AB=AE
<ABAC=/EAD,
AC=AD
"BgAAED(SAS).
2.(2024四川乐山)知:如图,4B平分NC4D,AC=AD.求证:NC=/D.
【答案】见解析
【解析】利用SAS证明ACAB2ADAB,即可证明NC=ND.
AB平分Z.CAD,
NCAB=/DAB,
在AC/3和中,
AC=AD
<ZCAB=ZDAB,
AB=AB
.-.ACAB^ADAB(SAS),
ZC=ZD.
【点睛】本题主要考查全等三角形的判定与性质,熟练掌握SAS、AAS、ASA、SSS等全等三角
形的判定方法是解题的关键.
3.(2024江苏连云港)如图,N3与相交于点E,EC=ED,AC//BD.
DN'
(1)求证:AAEC义XBED;
(2)用无刻度的直尺和圆规作图:求作菱形DXCN,使得点“在ZC上,点N在8。上.(不写
作法,保留作图痕迹,标明字母)
【答案】(1)见解析(2)见解析
【解析】【分析】(1)根据平行线的性质得到N/=N8,NC=N。,结合EC=ED,利用AAS即
可证明△NECSBED;
(2)作CO的垂直平分线,分别交于点连接。M,CN即可.
【小问1详解】
证明:・・•/C〃B£),
:.ZA=NB,ZC=ZD.
ZA=ZB
在△NEC和△BED中,<ZC=ZD,
EC=ED
:.AAECaBED(AAS);
【小问2详解】
解::MV是CD的垂直平分线,
:.MD=MC,DN=CN,
由(1)的结论可知,NA=NB,AE=BE,
又:/AEM=/BEN,
则△ZEMMABEN,
/.ME=NE,
-CD±MN,
.,.CD是〃”的垂直平分线,
:.DM=DN,CM=CN,
:.DM=DN=CN=CM,
.•.四边形。MCN是菱形,
【点睛】本题考查了垂直平分线的作法,平行线的性质,三角形全等的判定,菱形的判定,熟练掌握
垂直平分线的作法及三角形全等的判定定理是解题的关键.
4.(2024江苏苏州)如图,AASC中,AB=AC,分别以5,。为圆心,大于45c长为半径画
2
弧,两弧交于点。,连接BD,CD,AD,AD与BC交于点、E.
(1)求证:A4BD会—CD;
(2)若BD=2,ZBDC=120°,求的长.
【答案】(1)见解析(2)BC=26
【解析】本题考查了全等三角形的判定与性质,等腰三角形的性质,解直角三角形等知识,解题的关
键是:
(1)直接利用SSS证明即可;
(2)利用全等三角形的性质可求出aBD4=NCD4=60°,利用三线合一性质得出0/,,
BE=CE,在RtASQE中,利用正弦定义求出BE,即可求解.
【小问1详解】
证明:由作图知:BD=CD.
在△48。和AZCD中,
AB=AC,
■:<BD=CD,
AD=AD.
.■△ABD^Z\ACD.
【小问2详解】
解:•:AABD'ACD,ZBDC=120°,
ABDA=ACDA=60°.
又<BD=CD,
DAISC,BE=CE.
•••BD=2,
BE=BD-sinZBDA=2x—=73.
2
BC=2BE=2A/3.
5.(2024江苏盐城)已知:如图,点/、B、C、。在同一条直线上,AE//BF,AE=BF.
若,则45=CO.
请从①C£〃。尸;②CE=DF;③NE=//这3个选项中选择一个作为条件(写序号),使结
论成立,并说明理由.
【答案】①或③(答案不唯一),证明见解析
【解析】【分析】题目主要考查全等三角形的判定和性质,①根据平行线的性质得出
/A=/FBD,/D=/ECA,再由全等三角形的判定和性质得出/C=5。,结合图形即可证明;②
得不出相应的结论;③根据全等三角形的判定得出结合图形即可证明;熟练
掌握全等三角形的判定和性质是解题关键.
【详解】解:选择①〃。尸;
•1,AE//BF,CE//DF,
/.N4=ZFBD,ZD=ZECA,
':AE=BF,
:,AAEC^ABFD(AAS),
/.AC=BD,
AAC-BC^BD-BC,即45=m
选择②CE=£>/;
无法证明△NEC也ABFD,
无法得出=CD;
选择③NE=NE;
•/AE//BF,
:.ZA=ZFBD,
AE=BF,ZE=ZF,
:."EC应BFD(ASA),
:.AC=BD,
/.AC-BC^BD-BC,即45=m
故答案为:①或③(答案不唯一)
6.(2024四川南充)如图,在AZ8C中,点。为边的中点,过点8作〃/。交4D的延长
线于点E.
(1)求证:“BDE%CDA.
(2)若4D工BC,求证:BA=BE
【答案】(1)见解析(2)见解析
【解析】本题考查全等三角形的判定和性质,中垂线的判定和性质:
(1)由中点,得到5。=CD,由5£〃/C,得到NE=ND4C,NDBE=NC,即可得证;
(2)由全等三角形的性质,得到ED=N£>,进而推出5。垂直平分ZE,即可得证.
【小问1详解】
证明:•.•。为的中点,
BD=CD.
BE//AC,
ZE=ADAC,/DBE=ZC;
'ZE=ZDAC
在ABQE和△CD/中,<ND8E=NC
BD=CD
:.ABDE^CDA(AAS);
【小问2详解】
证明:•:ABDE会MDA,
:.ED=AD
AD±BC,
:.BD垂直平分AE,
BA=BE.
7.(2024四川自贡)如图,在AZ8C中,DE//BC,/EDF=NC.
A
(1)求证:ZBDF=ZA;
(2)若NZ=45。,DF平分NBDE,请直接写出的形状.
【答案】(1)见解析(2)是等腰直角三角形.
【解析】本题考查了平行线的判定和性质,等腰直角三角形的判定.
(1)由平行证明//££>=NC,由等量代换得到NED尸=//即,利用平行线的判定”内错角相等,
两直线平行”证明DF//AC,即可证明ZBDF=ZA;
(2)利用平行线的性质结合角平分线的定义求得=90°,D5=90°,据此即可得到是
等腰直角三角形.
【小问1详解】
证明::£>£〃BC,
/.ZAED=ZC,
•1,ZEDF=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论