2024-2025学年重庆市北碚区高一年级上册第一次月考数学学情检测试题(含解析)_第1页
2024-2025学年重庆市北碚区高一年级上册第一次月考数学学情检测试题(含解析)_第2页
2024-2025学年重庆市北碚区高一年级上册第一次月考数学学情检测试题(含解析)_第3页
2024-2025学年重庆市北碚区高一年级上册第一次月考数学学情检测试题(含解析)_第4页
2024-2025学年重庆市北碚区高一年级上册第一次月考数学学情检测试题(含解析)_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024-2025学年重庆市北错区高一上学期第一次月考数学学情

检测试题

一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合

题目要求的.

1,已知集合”=《,,},则

A.UB.{1,3,5}C.{2,4,6}D,{3,5,6)

2已知全集0=火,集合2={#2<x<3},B=\yy>->,则(①B)=()

A[-2,0)B.—2,;]

C.0,;]D,[0,3)

3.设命题尸勺〃eN,〃2〉2",则「P为

A.V〃eN,〃2〉2"B.3n&N,n2<2'1

C.V〃eN,〃2<2"D.3n&N,n2=T

4.设xeR,则“x2_4x+3<o”是“J+x-2〉0”的()

A.充分而不必要条件B.必要而不充分条件

C充要条件D.既不充分也不必要条件

5.使得不等式“必<1,,成立的一个必要不充分条件是()

A.-1<X<1B.x<\C.x<lD.x>1

6,下列六个关系式:①{a,6}U{b,a}@{°回={4a}:③网=0;④0e{0};⑤0e{0};

⑥0口{0},其中正确的个数为()

A.3个B.4个C.5个D.6个

7.为丰富学生的课外活动,学校开展了丰富的选修课,参与“数学建模选修课”的有169人,

参与“语文素养选修课”的有158人,参与“国际视野选修课”的有145人,三项选修课都参与的

有30人,三项选修课都没有参与的有20人,全校共有400人,问只参与两项活动的同学有

多少人?()

A.30B.31C.32D.33

8.若不等式("2)必+2(。-2)x-4<0对任意实数x均成立,则实数a的取值范围是

()

A.(—2,2]B.[-2,2]C.(2,+8)D.(-8,2]

二、多选题:本题共3小题,共18分.在每小题给出的选项中,有多项符合题目要求,部份选

对得部份分,有选错的不得分.

9.己知集合/={0』},B=\x\ax-+x-\=0\,若4卫B,则实数a的取值可以是()

1

A.0B.1C.-1D.-

2

10.若a,“ceR,c〉0〉a〉b,下列不等式一定成立的有()

2311

A.ab3>a3bB.—>—

ab

babZ?+l

C.------->--------D.-<------

a-cb-caa+1

11.已知>0,x+2y+中一6=0,贝ij()

A.孙的最大值为0

B.x+2y的最小值为4

C.x+y的最小值为4行_3

D.(》+2)2+(卜+1)2的最小值为16

三、填空题:本题共3小题,每小题5分,共15分.

12.已知集合2={1,。},02={4},。={1,d°2},则。=.

13.不等式X-2<33的解集为

x

x?—2x+4

14.若x〉2,则y=2—的最小值为.

x—2

四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.

15.己知集合/={x[0<x<2},B=|x|tz<x<3-2o}.

(1)若(金Z)uB=R,求实数。的取值范围;

(2)若418力8,求实数a的取值范围.

16.求函数〉=x+』(x<0)的最值.

x

17.已知全集为R,集合尸=卜产-12X+20W0},集合M={x|x<a或x>2a+l}(a>0).

(1)若xe尸是xeM成立的充分不必要条件,求a的取值范围;

(2)若?。(为河)=0,求a的取值范围.

18.(1)已知x>l,求4X+1H—匚的最小值;

x—1

(2)已知0<x<l,求x(4-3x)的最大值.

19.科技创新是企业发展的源动力,是一个企业能够实现健康持续发展的重要基础.某科技企

业最新研发了一款大型电子设备,并投入生产应用.经调研,该企业生产此设备获得的月利

润。(x)(单位:万元)与投入的月研发经费x(15<x<40,单位:万元)有关:当投入的

月研发经费不高于36万元时,^(x)=--x2+8x-90;当投入月研发经费高于36万元时,

p(x)=0.4x+54.对于企业而言,研发利润率y=£00x100%,是优化企业管理的重要

X

依据之一,y越大,研发利润率越高,反之越小.

(1)求该企业生产此设备的研发利润率y的最大值以及相应月研发经费X的值;

(2)若该企业生产此设备的研发利润率不低于190%,求月研发经费x的取值范围.

2024-2025学年重庆市北借区高一上学期第一次月考数学学情检测试题

一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合

题目要求的.

1.已知集合”=则电M

A.UB,{1,3,5}C.{2,4,6}D.{3,5,6}

【答案】D

【解析】

【详解】试题分析:因为。={1,2,3,4,5,6},"={1,2,4},所以,6"={3,5,6}

故选D.

考点:集合的运算.

2.已知全集。=尺,集合2={川一2<》<3},B=<yy>~>,则ZD(63)=()

A.[—2,0)B,-2,g]

C.0,;)D.[0,3)

【答案】B

【解析】

【分析】结合补集和交集的概念即可求出结果.

【详解】因为全集。=火,B-<y>>则

且N=|x|-2<x<31,所以/c(d8)=-2<x<g>,

故选:B.

3.设命题P3〃eN,〃2>2",则「尸为

A.V〃eN,〃2>2"B.3neN,n2<2"

C.\fneN,n2<2nD.3neN,n2=2"

【答案】c

【解析】

【详解】特称命题的否定为全称命题,所以命题/,的否命题应该为V〃eN,〃2W2",即本题的正确选项为

C.

4.设xeR,则“――4》+3<0”是^^x2+x-2>Q,,的()

A.充分而不必要条件B,必要而不充分条件

C.充要条件D.既不充分也不必要条件

【答案】A

【解析】

【分析】求出两个不等式对应的解集,根据解集的关系,结合充分与必要条件的概念判断即可.

[详解]设幺={x|X?_4x+3<0}={x|(x-l)(x-3)<0}=(x11<x<3}

3={x|Y+%_2〉o}={x|(x_l)(x+2)〉0}={x|x〉1或x<-2}

xeA^>xeB,但xeB推不出xe/

“一一4x+3<0”是“f+x_2〉0”的充分而不必要条件.

故选:A.

5.使得不等式“必<1”成立的一个必要不充分条件是()

A.-1<X<1B.x<lC.x<lD.x>l

【答案】C

【解析】

【分析】首先解出一元二次不等式,再根据集合的包含关系判断即可.

【详解】由》2<1,即(x+l)(x—1)<0,解得—

因为[-1』真包含于(一0u],

所以使得不等式“好<1”成立的一个必要不充分条件可以是XW1.

故选:C

6.下列六个关系式:①{a,6}U{4a};②{a,6}={“a};③网=0;©0e{0};⑤0e{O};@

07网,其中正确的个数为()

A.3个B.4个C.5个D.6个

【答案】B

【解析】

【分析】利用元素和集合的关系、集合间的关系、集合中元素的特性分析判断即可得解.

【详解】解:对于①,由集合间的关系和集合中元素的无序性知{出印={"力,故①正确;

对于②,由集合中元素的无序性知{。力}={“。},故②正确;

对于③,。是没有任何元素的集合,而集合{0}中有元素0,所以{0}70,故③错误;

对于④,0是集合{0}的元素,所以0e{0},故④正确;

对于⑤,0是集合{0}的子集而非元素,故⑤错误;

对于⑥,0是集合{0}的子集,即07{0},故⑥正确;

综上知,正确的个数为4个.

故选:B.

7.为丰富学生的课外活动,学校开展了丰富的选修课,参与“数学建模选修课”的有169人,参与“语文

素养选修课”的有158人,参与“国际视野选修课”的有145人,三项选修课都参与的有30人,三项选修

课都没有参与的有20人,全校共有400人,问只参与两项活动的同学有多少人?()

A.30B.31C.32D.33

【答案】C

【解析】

【分析】先画出韦恩图,根据荣斥原理求解.

【详解】画出维恩图如下:

设:只参加“数学建模课”和“语文素养课”的有x人,只参加“数学建模课”和“国际视野课”的有>人,

只参加“语文素养课”和“国际视野课”的有z人,

贝ij:139+128+115+30-(x+j+z)+20=400,x+y+z=32;

故答案为:32人.

8.若不等式(。-2)/+2("2卜-4<0对任意实数x均成立,则实数a的取值范围是()

A.(—2,2]B,[-2,2]C.(2,+(X>)D.(―℃,2]

【答案】A

【解析】

【分析】分类讨论,结合不等式(。-2)炉+2("2卜-4<0对任意实数x均成立,利用分类讨论,即可

求出实数a的取值范围.

【详解】。=2时,不等式可化为-4<0,对任意实数x均成立,满足题意;

aw2时,不等式(a-2)f+2(a—2卜一4<0对任意实数x均成立,

Q—2<0

等价于1/\2/\,

A=4(a-2)+16(a-2)<0

***_2<〃<2.

综上,实数a的取值范围是(-2,2].

故选:A.

二、多选题:本题共3小题,共18分.在每小题给出的选项中,有多项符合题目要求,部份选

对得部份分,有选错的不得分.

9.已知集合幺={0,1},5={x|ax2+x-l=0},若Z卫5,则实数a的取值可以是()

1

A.0B.1C.-1D.-

2

【答案】AC

【解析】

【分析】分。=0和aH0两种情况讨论集合2中的原式,即可求解.

【详解】当。=0时,3=律,满足条件,

[八=1+4。=0

当"0时,若8={1},则,,八,无解,

Q+1—1=0

.1A=1+4Q=0

若8={R0},则,八,无解,

—1=0

A=l+4a>0

若8={0,1},则<-1=0,无解,

Q+1—1=0

若3=0,则A=l+4〃<0,得一一,

4

。=0或。<—,,只有AC符合条件.

综上可知,

4

故选:AC

10.若Q,aC£R,C>0>4,下列不等式一定成立的有()

11

A.ab3>abB.—>-

ab

bab6+1

C.------->--------D.-<------

a-cb-caa+1

【答案】AC

【解析】

【分析】利用作差法逐项判断

【详解】A项,abi-a3b=ab[b1ab(b-a)(b+a)>Q,故正确;

---=^-<0,故错误;

B项,

abab

bab^b-c^-a^a-c^(b-a)(b+a-c

C项.>0,故正确;

a-cb-c(Z)-c)-(a-c)

bb+1_“a+l)-a(b+l)b-a

D项.3分母正负号不确定,故错误;

aQ+1I(Q+1)r

故选:AC

11.已知x,歹>0,x+2y+盯一6=0,贝1J()

A.孙的最大值为J5

B.x+2y的最小值为4

C.x+N的最小值为4贬—3

D.(x+2产+(y+l)2的最小值为16

【答案】BCD

【分析】A选项,对不等式变形为x+2y=6-盯,利用基本不等式得到6-孙》2J再,求出肛的最

大值;B选项,将不等式变形为肛=6-(x+2y),利用基本不等式得到6—(x+2田2刃,求出

x+2了的最小值;C选项,对不等式变形为Ml+x)=6-(x+y),利用y(l+x)W(y+:+l)求解工+及

的最小值;D选项,不等式变形为(x+2)(y+1)=8,利用基本不等式求出和的最小值.

【详解】由%+2歹+盯一6=0得:x+2y=6-xy,

因为x,y>0,所以x+2歹=6—中〉0,所以0<盯<6,

由基本不等式可得:x+2y»2j而

当且仅当x=2y时,等号成立,此时6-切》2d2xy,

解得:孙218或孙<2,

因为中<6,所以孙218舍去,故孙的最大值为2,A错误;

由x+2y+盯一6=0得:xy=6—(%+2〉),

因为x,歹>0,所以6—(x+2y)>0,所以0<x+2y<6,

由基本不等式可得:2肛W(x+『,当且仅当x=2y时等号成立,

即6_(X+2#W(X+『,解得:x+2y24或x+2y<-12,

因为0<x+2y<6,所以x+2歹4一12舍去,

故x+2y的最小值为4,B正确;

由x+2y+盯一6=0变形为x+y+y(l+x)=6,则y(l+x)=6—(x+y),

由基本不等式得:了(1+耳”+;+1),当且仅当y=i+x时等号成立,

此时6《+小(了+;+1),令x+y=/«〉o),则由6-W(':l),

解得:,240—3或/W—40-3(舍去)

所以x+N的最小值为48一3,C正确;

由x+2y+盯-6=0可得:(x+2)(y+1)=8,

从而(x+2)2+(>+1)2>2(%+2)0+1)=2x8=16

当且仅当x+2=y+l时,即》=2/一2,y=2正一1等号成立,

故(x+2)2+(3+1)2最小值为16.

故选:BCD,

三、填空题:本题共3小题,每小题5分,共15分.

12.已知集合/={l,a}。/={4},U={l,a,/},则。=.

【答案】±2

【解析】

【分析】根据补集的定义求解.

【详解】•.•62={4},幺={1,4},,/=4,。=±2;经检验满足题意;

故答案为:±2.

3

13.不等式X-2〈一的解集为

X

【答案】{x|x<-1或O<X<3}

【解析】

【分析】将不等式化为――2x—3<o,则x(x+l)(x—3)<0,再根据高次不等式得解法即可得解.

X

3

【详解】解:由x—2<一,

x

,曰f-2x_3„

得----------<0,

x

即x(x+1)(%-3)<0,

解得或0<x<3,

所以原不等式的解集为{x|X<-1或0<X<3}.

故答案为:{》|》<一1或0<%<3}.

x2—2x+4

14.若x>2,则y=--三二的最小值为.

x—2

【答案】6

【解析】

【分析】化简y=—处二=x-2+/一+2,然后利用基本不等式求解即可

x-2x-2

【详解】因为x>2,

所以y=x2—2x+4=(x—2)2+2(x—2)+4=x_2+,+222j(x_2)・^-+2=6,

x-2x-2x-2Vx-2

4

当且仅当x—2二——即x=4时,取等号,

x-2

故V=xX2—32x+,4的最小值为6,

x-2

故答案为:6

四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.

15.已知集合幺={x[0Wx<2},B=^x\a<x<3-2a}.

(1)若(ON)u8=R,求实数a的取值范围;

(2)若ZlB力B,求实数a的取值范围.

【答案】(1)(—8,0];(2)<aa<^>

【解析】

【分析】(1)由集合N可得。幺,利用(«幺)。8=11列出不等式组,求出实数。的取值范围;

(2)若4PlB=B,则分8=0和3/0两种情况,分别列不等式可得实数。的取值范围.

【详解】(1)因为A={x|0Wx<2},所以QA={x|x<0或x>2}.

XB=<x<3-2a}且(QA)uB=R,

3-2a>a

所以a<0,解得aWO

3-2a>2

所以实数a的取值范围是(-8,0].

(2)若4n5=5(补集思想),则8=4.

当8=0时,3-2a<a,解得Q>1;

当时,3-2a>a,即Q41,

a>01

要使3屋4,则。。,得

[3-2a<22

综上,知=3时,a>-,

2

所以ZlBwB时,实数a的取值范围是

、1

16.求函数y=x+工(x<0)的最值.

x

【答案】最大值为一2,没有最小值

【解析】

【分析】由基本不等式求解即可

【详解】Qx<0

/.—x>0,—>0,

故函数y=x+L(x<0)的最大值为—2,没有最小值.

X

17.已知全集为R,集合尸=,产一⑵+20«0},集合〃={x[x<

(1)若xe尸是xeM成立的充分不必要条件,求a的取值范围;

(2)若尸口(^^)=0,求a的取值范围.

【答案】(1)0,£|D(1O,+8)

⑵„(10,+如

【解析】

【分析】(1)由题意得,集合P是集合M的真子集,由此即可求解;

(2)先求出QM,再求出满足尸口(。川)=0时a的取值范围即可.

【小问1详解】

因为xe尸是xeM成立的充分不必要条件,所以集合P是集合M的真子集,

因为尸=卜卜2-12x+20<Oj-=1x|2<x<101,集合Af={x1x<a或x>2a+l}(a>0),

所以10<a或2>2a+l,解得0<a或a>10,

2

故a的取值范围为[o,g]u(lO,+8).

【小问2详解】

因为集合Af={x|xVa或x>2a+l}(a>0),所以Q7I/={X[Q<x<2a+l}(a>0),

又因为尸n(«M)=0,所以a>10或2a+l<2,解得0<a<g或a>10,

故口的取值范围为[0,9]°(10,+8).

18.(1)已知x>l,求4x+l+一一的最小值;

x—1

(2)已知0<x<l,求x(4-3x)的最大值.

4

【答案】(1)9;(2)

3

【解析】

【分析】(1)由于X—1>0,则4x+l+」一=4(x—1)+上+5,然后利用基本不等式求解即可,

X—1X—1

(2)由于0<x<l,变形得x(4—3x)=;・(3x)-(4—3x),然后利用基本不等式求解即可.

【详解】(1)因为x>l,所以x—1>0,

所以4x+l+,=4(x—l)+,+522,4(x—1).,+5=9,

x1X1Vx1

13

当且仅当4(x—l)=丁,即x=5时取等号,

x12

所以4x+l+,的最小值为9.

x—1

(2)因为0<x<l,所以何4_3司=:(3司.(4_3切臼3-+;3]=g,

2

当且仅当3x=4—3x,即》=—时取等号,

3

故x(4-3x)的最大值为

19.科技创新是企业发展的源动力,是一个企业能够实现健康持续发展的重要基础.某科技企业最新研发了

一款大型电子设备,并投入生产应用.经调研,该企业生产此设备获得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论