黑龙江省大庆市让胡路区铁人中学2025届高三5月质检数学试题_第1页
黑龙江省大庆市让胡路区铁人中学2025届高三5月质检数学试题_第2页
黑龙江省大庆市让胡路区铁人中学2025届高三5月质检数学试题_第3页
黑龙江省大庆市让胡路区铁人中学2025届高三5月质检数学试题_第4页
黑龙江省大庆市让胡路区铁人中学2025届高三5月质检数学试题_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省大庆市让胡路区铁人中学2025届高三5月质检数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若,,,则()A. B.C. D.2.已知实数满足则的最大值为()A.2 B. C.1 D.03.《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:,,,,则按照以上规律,若具有“穿墙术”,则()A.48 B.63 C.99 D.1204.过双曲线左焦点的直线交的左支于两点,直线(是坐标原点)交的右支于点,若,且,则的离心率是()A. B. C. D.5.甲在微信群中发了一个6元“拼手气”红包,被乙、丙、丁三人抢完,若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领到的钱数多于其他任何人)的概率是()A. B. C. D.6.已知为两条不重合直线,为两个不重合平面,下列条件中,的充分条件是()A.∥ B.∥C.∥∥ D.7.设数列是等差数列,,.则这个数列的前7项和等于()A.12 B.21 C.24 D.368.已知函数的一条切线为,则的最小值为()A. B. C. D.9.已知复数,其中,,是虚数单位,则()A. B. C. D.10.已知,若,则等于()A.3 B.4 C.5 D.611.若复数满足,则的虚部为()A.5 B. C. D.-512.已知定义在上的函数,若函数为偶函数,且对任意,,都有,若,则实数的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则下列结论中正确的是_________.①是周期函数;②的对称轴方程为,;③在区间上为增函数;④方程在区间有6个根.14.已知实数、满足,且可行域表示的区域为三角形,则实数的取值范围为______,若目标函数的最小值为-1,则实数等于______.15.记数列的前项和为,已知,且.若,则实数的取值范围为________.16.若为假,则实数的取值范围为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,焦点在轴上的椭圆与焦点在轴上的椭圆都过点,中心都在坐标原点,且椭圆与的离心率均为.(Ⅰ)求椭圆与椭圆的标准方程;(Ⅱ)过点M的互相垂直的两直线分别与,交于点A,B(点A、B不同于点M),当的面积取最大值时,求两直线MA,MB斜率的比值.18.(12分)已知函数.(1)若恒成立,求的取值范围;(2)设函数的极值点为,当变化时,点构成曲线,证明:过原点的任意直线与曲线有且仅有一个公共点.19.(12分)如图,四棱锥中,底面,,点在线段上,且.(1)求证:平面;(2)若,,,,求二面角的正弦值.20.(12分)已知函数.(1)求不等式的解集;(2)若存在实数,使得不等式成立,求实数的取值范围.21.(12分)设函数f(x)=sin(2x-π(I)求f(x)的最小正周期;(II)若α∈(π6,π)且f(22.(10分)已知函数.(1)若在上是减函数,求实数的最大值;(2)若,求证:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】

利用指数函数和对数函数的单调性比较、、三个数与和的大小关系,进而可得出、、三个数的大小关系.【详解】对数函数为上的增函数,则,即;指数函数为上的增函数,则;指数函数为上的减函数,则.综上所述,.故选:C.【点睛】本题考查指数幂与对数式的大小比较,一般利用指数函数和对数函数的单调性结合中间值法来比较,考查推理能力,属于基础题.2.B【解析】

作出可行域,平移目标直线即可求解.【详解】解:作出可行域:由得,由图形知,经过点时,其截距最大,此时最大得,当时,故选:B【点睛】考查线性规划,是基础题.3.C【解析】

观察规律得根号内分母为分子的平方减1,从而求出n.【详解】解:观察各式发现规律,根号内分母为分子的平方减1所以故选:C.【点睛】本题考查了归纳推理,发现总结各式规律是关键,属于基础题.4.D【解析】

如图,设双曲线的右焦点为,连接并延长交右支于,连接,设,利用双曲线的几何性质可以得到,,结合、可求离心率.【详解】如图,设双曲线的右焦点为,连接,连接并延长交右支于.因为,故四边形为平行四边形,故.又双曲线为中心对称图形,故.设,则,故,故.因为为直角三角形,故,解得.在中,有,所以.故选:D.【点睛】本题考查双曲线离心率,注意利用双曲线的对称性(中心对称、轴对称)以及双曲线的定义来构造关于的方程,本题属于难题.5.B【解析】

将所有可能的情况全部枚举出来,再根据古典概型的方法求解即可.【详解】设乙,丙,丁分别领到x元,y元,z元,记为,则基本事件有,,,,,,,,,,共10个,其中符合乙获得“最佳手气”的有3个,故所求概率为,故选:B.【点睛】本题主要考查了枚举法求古典概型的方法,属于基础题型.6.D【解析】

根据面面垂直的判定定理,对选项中的命题进行分析、判断正误即可.【详解】对于A,当,,时,则平面与平面可能相交,,,故不能作为的充分条件,故A错误;对于B,当,,时,则,故不能作为的充分条件,故B错误;对于C,当,,时,则平面与平面相交,,,故不能作为的充分条件,故C错误;对于D,当,,,则一定能得到,故D正确.故选:D.【点睛】本题考查了面面垂直的判断问题,属于基础题.7.B【解析】

根据等差数列的性质可得,由等差数列求和公式可得结果.【详解】因为数列是等差数列,,所以,即,又,所以,,故故选:B【点睛】本题主要考查了等差数列的通项公式,性质,等差数列的和,属于中档题.8.A【解析】

求导得到,根据切线方程得到,故,设,求导得到函数在上单调递减,在上单调递增,故,计算得到答案.【详解】,则,取,,故,.故,故,.设,,取,解得.故函数在上单调递减,在上单调递增,故.故选:.【点睛】本题考查函数的切线问题,利用导数求最值,意在考查学生的计算能力和综合应用能力.9.D【解析】试题分析:由,得,则,故选D.考点:1、复数的运算;2、复数的模.10.C【解析】

先求出,再由,利用向量数量积等于0,从而求得.【详解】由题可知,因为,所以有,得,故选:C.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的减法坐标运算公式,向量垂直的坐标表示,属于基础题目.11.C【解析】

把已知等式变形,再由复数代数形式的乘除运算化简得答案.【详解】由(1+i)z=|3+4i|,得z,∴z的虚部为.故选C.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.12.A【解析】

根据题意,分析可得函数的图象关于对称且在上为减函数,则不等式等价于,解得的取值范围,即可得答案.【详解】解:因为函数为偶函数,所以函数的图象关于对称,因为对任意,,都有,所以函数在上为减函数,则,解得:.即实数的取值范围是.故选:A.【点睛】本题考查函数的对称性与单调性的综合应用,涉及不等式的解法,属于综合题.二、填空题:本题共4小题,每小题5分,共20分。13.①②④【解析】

由函数,对选项逐个验证即得答案.【详解】函数,是周期函数,最小正周期为,故①正确;当或时,有最大值或最小值,此时或,即或,即.的对称轴方程为,,故②正确;当时,,此时在上单调递减,在上单调递增,在区间上不是增函数,故③错误;作出函数的部分图象,如图所示方程在区间有6个根,故④正确.故答案为:①②④.【点睛】本题考查三角恒等变换,考查三角函数的性质,属于中档题.14.【解析】

作出不等式组对应的平面区域,利用目标函数的几何意义,结合目标函数的最小值,利用数形结合即可得到结论.【详解】作出可行域如图,则要为三角形需满足在直线下方,即,;目标函数可视为,则为斜率为1的直线纵截距的相反数,该直线截距最大在过点时,此时,直线:,与:的交点为,该点也在直线:上,故,故答案为:;.【点睛】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法,属于基础题.15.【解析】

根据递推公式,以及之间的关系,即可容易求得,再根据数列的单调性,求得其最大值,则参数的范围可求.【详解】当时,,解得.所以.因为,则,两式相减,可得,即,则.两式相减,可得.所以数列是首项为3,公差为2的等差数列,所以,则.令,则.当时,,数列单调递减,而,,,故,即实数的取值范围为.故答案为:.【点睛】本题考查由递推公式求数列的通项公式,涉及数列单调性的判断,属综合困难题.16.【解析】

由为假,可知为真,所以对任意实数恒成立,求出的最小值,令即可.【详解】因为为假,则其否定为真,即为真,所以对任意实数恒成立,所以.又,当且仅当,即时,等号成立,所以.故答案为:.【点睛】本题考查全称命题与特称命题间的关系的应用,利用参变分离是解决本题的关键,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1),(2)【解析】分析:(1)根据题的条件,得到对应的椭圆的上顶点,即可以求得椭圆中相应的参数,结合椭圆的离心率的大小,求得相应的参数,从而求得椭圆的方程;(2)设出一条直线的方程,与椭圆的方程联立,消元,利用求根公式求得对应点的坐标,进一步求得向量的坐标,将S表示为关于k的函数关系,从眼角函数的角度去求最值,从而求得结果.详解:(Ⅰ)依题意得对:,,得:;同理:.(Ⅱ)设直线的斜率分别为,则MA:,与椭圆方程联立得:,得,得,,所以同理可得.所以,从而可以求得因为,所以,不妨设,所以当最大时,,此时两直线MA,MB斜率的比值.点睛:该题考查的是有关椭圆与直线的综合题,在解题的过程中,注意椭圆的对称性,以及其特殊性,与y轴的交点即为椭圆的上顶点,结合椭圆焦点所在轴,得到相应的参数的值,再者就是应用离心率的大小找参数之间的关系,在研究直线与椭圆相交的问题时,首先设出直线的方程,与椭圆的方程联立,求得结果,注意从函数的角度研究问题.18.(1);(2)证明见解析【解析】

(1)由恒成立,可得恒成立,进而构造函数,求导可判断出的单调性,进而可求出的最小值,令即可;(2)由,可知存在唯一的,使得,则,,进而可得,即曲线的方程为,进而只需证明对任意,方程有唯一解,然后构造函数,分、和三种情况,分别证明函数在上有唯一的零点,即可证明结论成立.【详解】(1)由题意,可知,由恒成立,可得恒成立.令,则.令,则,,,在上单调递增,又,时,;时,,即时,;时,,时,单调递减;时,单调递增,时,取最小值,.(2)证明:由,令,由,结合二次函数性质可知,存在唯一的,使得,故存在唯一的极值点,则,,,曲线的方程为.故只需证明对任意,方程有唯一解.令,则,①当时,恒成立,在上单调递增.,,,存在满足时,使得.又单调递增,所以为唯一解.②当时,二次函数,满足,则恒成立,在上单调递增.,,存在使得,又在上单调递增,为唯一解.③当时,二次函数,满足,此时有两个不同的解,不妨设,,,列表如下:00↗极大值↘极小值↗由表可知,当时,的极大值为.,,,,,..下面来证明,构造函数,则,当时,,此时单调递增,,时,,,故成立.,存在,使得.又在单调递增,为唯一解.所以,对任意,方程有唯一解,即过原点任意的直线与曲线有且仅有一个公共点.【点睛】本题考查利用导数研究函数单调性的应用,考查不等式恒成立问题,考查利用单调性研究图象交点问题,考查学生的计算求解能力与推理论证能力,属于难题.19.(1)证明见解析(2)【解析】

(1)要证明平面,只需证明,,即可求得答案;(2)先根据已知证明四边形为矩形,以为原点,为轴,为轴,为轴,建立坐标系,求得平面的法向量为,平面的法向量,设二面角的平面角为,,即可求得答案.【详解】(1)平面,平面,.,,.又,平面.(2)由(1)可知.在中,,..又,,四边形为矩形.以为原点,为轴,为轴,为轴,建立坐标系,如图:则:,,,,:,设平面的法向量为,即,令,则,由题平面,即平面的法向量为由二面角的平面角为锐角,设二面角的平面角为即二面角的正弦值为:.【点睛】本题主要考查了求证线面垂直和向量法求二面角,解题关键是掌握线面垂直判断定理和向量法求二面角的方法,考查了分析能力和计算能力,属于中档题.20.(1);(2).【解析】

(1)将函数的解析式表示为分段函数,然后分、、三段求解不等式,综合可得出不等

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论