




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省邯郸市临漳第一中学2025届高三下学期第三次诊断性考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若的二项式展开式中二项式系数的和为32,则正整数的值为()A.7 B.6 C.5 D.42.执行如图所示的程序框图,若输出的,则①处应填写()A. B. C. D.3.若函数有且只有4个不同的零点,则实数的取值范围是()A. B. C. D.4.已知全集,则集合的子集个数为()A. B. C. D.5.设,是两条不同的直线,,是两个不同的平面,给出下列四个命题:①若,,则;②若,,则;③若,,则;④若,,则;其中真命题的个数为()A. B. C. D.6.已知函数的图象如图所示,则可以为()A. B. C. D.7.执行如图所示的程序框图,则输出的的值是()A.8 B.32 C.64 D.1288.若时,,则的取值范围为()A. B. C. D.9.若复数在复平面内对应的点在第二象限,则实数的取值范围是()A. B. C. D.10.函数的定义域为,集合,则()A. B. C. D.11.已知函数,方程有四个不同的根,记最大的根的所有取值为集合,则“函数有两个零点”是“”的().A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.已知复数为虚数单位),则z的虚部为()A.2 B. C.4 D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,四面体的一条棱长为,其余棱长均为1,记四面体的体积为,则函数的单调增区间是____;最大值为____.14.有以下四个命题:①在中,的充要条件是;②函数在区间上存在零点的充要条件是;③对于函数,若,则必不是奇函数;④函数与的图象关于直线对称.其中正确命题的序号为______.15.在正奇数非减数列中,每个正奇数出现次.已知存在整数、、,对所有的整数满足,其中表示不超过的最大整数.则等于______.16.已知两动点在椭圆上,动点在直线上,若恒为锐角,则椭圆的离心率的取值范围为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,正方形是某城市的一个区域的示意图,阴影部分为街道,各相邻的两红绿灯之间的距离相等,处为红绿灯路口,红绿灯统一设置如下:先直行绿灯30秒,再左转绿灯30秒,然后是红灯1分钟,右转不受红绿灯影响,这样独立的循环运行.小明上学需沿街道从处骑行到处(不考虑处的红绿灯),出发时的两条路线()等可能选择,且总是走最近路线.(1)请问小明上学的路线有多少种不同可能?(2)在保证通过红绿灯路口用时最短的前提下,小明优先直行,求小明骑行途中恰好经过处,且全程不等红绿灯的概率;(3)请你根据每条可能的路线中等红绿灯的次数的均值,为小明设计一条最佳的上学路线,且应尽量避开哪条路线?18.(12分)已知抛物线,过点的直线交抛物线于两点,坐标原点为,.(1)求抛物线的方程;(2)当以为直径的圆与轴相切时,求直线的方程.19.(12分)如图,底面是等腰梯形,,点为的中点,以为边作正方形,且平面平面.(1)证明:平面平面.(2)求二面角的正弦值.20.(12分)设前项积为的数列,(为常数),且是等差数列.(I)求的值及数列的通项公式;(Ⅱ)设是数列的前项和,且,求的最小值.21.(12分)在平面直角坐标系xOy中,曲线l的参数方程为(为参数),以原点O为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为4sin.(1)求曲线C的普通方程;(2)求曲线l和曲线C的公共点的极坐标.22.(10分)在中,角,,的对边分别为,,,已知.(1)若,,成等差数列,求的值;(2)是否存在满足为直角?若存在,求的值;若不存在,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
由二项式系数性质,的展开式中所有二项式系数和为计算.【详解】的二项展开式中二项式系数和为,.故选:C.【点睛】本题考查二项式系数的性质,掌握二项式系数性质是解题关键.2.B【解析】
模拟程序框图运行分析即得解.【详解】;;.所以①处应填写“”故选:B【点睛】本题主要考查程序框图,意在考查学生对这些知识的理解掌握水平.3.B【解析】
由是偶函数,则只需在上有且只有两个零点即可.【详解】解:显然是偶函数所以只需时,有且只有2个零点即可令,则令,递减,且递增,且时,有且只有2个零点,只需故选:B【点睛】考查函数性质的应用以及根据零点个数确定参数的取值范围,基础题.4.C【解析】
先求B.再求,求得则子集个数可求【详解】由题=,则集合,故其子集个数为故选C【点睛】此题考查了交、并、补集的混合运算及子集个数,熟练掌握各自的定义是解本题的关键,是基础题5.C【解析】
利用线线、线面、面面相应的判定与性质来解决.【详解】如果两条平行线中一条垂直于这个平面,那么另一条也垂直于这个平面知①正确;当直线平行于平面与平面的交线时也有,,故②错误;若,则垂直平面内以及与平面平行的所有直线,故③正确;若,则存在直线且,因为,所以,从而,故④正确.故选:C.【点睛】本题考查空间中线线、线面、面面的位置关系,里面涉及到了相应的判定定理以及性质定理,是一道基础题.6.A【解析】
根据图象可知,函数为奇函数,以及函数在上单调递增,且有一个零点,即可对选项逐个验证即可得出.【详解】首先对4个选项进行奇偶性判断,可知,为偶函数,不符合题意,排除B;其次,在剩下的3个选项,对其在上的零点个数进行判断,在上无零点,不符合题意,排除D;然后,对剩下的2个选项,进行单调性判断,在上单调递减,不符合题意,排除C.故选:A.【点睛】本题主要考查图象的识别和函数性质的判断,意在考查学生的直观想象能力和逻辑推理能力,属于容易题.7.C【解析】
根据给定的程序框图,逐次计算,结合判断条件,即可求解.【详解】由题意,执行上述程序框图,可得第1次循环,满足判断条件,;第2次循环,满足判断条件,;第3次循环,满足判断条件,;第4次循环,满足判断条件,;不满足判断条件,输出.故选:C.【点睛】本题主要考查了循环结构的程序框图的计算与输出,其中解答中认真审题,逐次计算,结合判断条件求解是解答的关键,着重考查了推理与运算能力,属于基础题.8.D【解析】
由题得对恒成立,令,然后分别求出即可得的取值范围.【详解】由题得对恒成立,令,在单调递减,且,在上单调递增,在上单调递减,,又在单调递增,,的取值范围为.故选:D【点睛】本题主要考查了不等式恒成立问题,导数的综合应用,考查了转化与化归的思想.求解不等式恒成立问题,可采用参变量分离法去求解.9.B【解析】
复数,在复平面内对应的点在第二象限,可得关于a的不等式组,解得a的范围.【详解】,由其在复平面对应的点在第二象限,得,则.故选:B.【点睛】本题考查了复数的运算法则、几何意义、不等式的解法,考查了推理能力与计算能力,属于基础题.10.A【解析】
根据函数定义域得集合,解对数不等式得到集合,然后直接利用交集运算求解.【详解】解:由函数得,解得,即;又,解得,即,则.故选:A.【点睛】本题考查了交集及其运算,考查了函数定义域的求法,是基础题.11.A【解析】
作出函数的图象,得到,把函数有零点转化为与在(2,4]上有交点,利用导数求出切线斜率,即可求得的取值范围,再根据充分、必要条件的定义即可判断.【详解】作出函数的图象如图,由图可知,,函数有2个零点,即有两个不同的根,也就是与在上有2个交点,则的最小值为;设过原点的直线与的切点为,斜率为,则切线方程为,把代入,可得,即,∴切线斜率为,∴k的取值范围是,∴函数有两个零点”是“”的充分不必要条件,故选A.【点睛】本题主要考查了函数零点的判定,考查数学转化思想方法与数形结合的解题思想方法,训练了利用导数研究过曲线上某点处的切线方程,试题有一定的综合性,属于中档题.12.A【解析】
对复数进行乘法运算,并计算得到,从而得到虚部为2.【详解】因为,所以z的虚部为2.【点睛】本题考查复数的四则运算及虚部的概念,计算过程要注意.二、填空题:本题共4小题,每小题5分,共20分。13.(或写成)【解析】试题分析:设,取中点则,因此,所以,因为在单调递增,最大值为所以单调增区间是,最大值为考点:函数最值,函数单调区间14.①【解析】
由三角形的正弦定理和边角关系可判断①;由零点存在定理和二次函数的图象可判断②;由,结合奇函数的定义,可判断③;由函数图象对称的特点可判断④.【详解】解:①在中,,故①正确;②函数在区间上存在零点,比如在存在零点,但是,故②错误;③对于函数,若,满足,但可能为奇函数,故③错误;④函数与的图象,可令,即,即有和的图象关于直线对称,即对称,故④错误.故答案为:①.【点睛】本题主要考查函数的零点存在定理和对称性、奇偶性的判断,考查判断能力和推理能力,属于中档题.15.2【解析】
将已知数列分组为(1),,共个组.设在第组,,则有,即.注意到,解得.所以,.因此,.故.16.【解析】
根据题意可知圆上任意一点向椭圆所引的两条切线互相垂直,恒为锐角,只需直线与圆相离,从而可得,解不等式,再利用离心率即可求解.【详解】根据题意可得,圆上任意一点向椭圆所引的两条切线互相垂直,因此当直线与圆相离时,恒为锐角,故,解得从而离心率.故答案为:【点睛】本题主要考查了椭圆的几何性质,考查了逻辑分析能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)6种;(2);(3).【解析】
(1)从4条街中选择2条横街即可;(2)小明途中恰好经过处,共有4条路线,即,,,,分别对4条路线进行分析计算概率;(3)分别对小明上学的6条路线进行分析求均值,均值越大的应避免.【详解】(1)路途中可以看成必须走过2条横街和2条竖街,即从4条街中选择2条横街即可,所以路线总数为条.(2)小明途中恰好经过处,共有4条路线:①当走时,全程不等红绿灯的概率;②当走时,全程不等红绿灯的概率;③当走时,全程不等红绿灯的概率;④当走时,全程不等红绿灯的概率.所以途中恰好经过处,且全程不等信号灯的概率.(3)设以下第条的路线等信号灯的次数为变量,则①第一条:,则;②第二条:,则;③另外四条路线:;;,则综上,小明上学的最佳路线为;应尽量避开.【点睛】本题考查概率在实际生活中的综合应用问题,考查学生逻辑推理与运算能力,是一道有一定难度的题.18.(1);(2)或【解析】试题分析:本题主要考查抛物线的标准方程、直线与抛物线的相交问题、直线与圆相切问题等基础知识,同时考查考生的分析问题解决问题的能力、转化能力、运算求解能力以及数形结合思想.第一问,设出直线方程与抛物线方程联立,利用韦达定理得到y1+y2,y1y2,,代入到中解出P的值;第二问,结合第一问的过程,利用两种方法求出的长,联立解出m的值,从而得到直线的方程.试题解析:(Ⅰ)设l:x=my-2,代入y2=2px,得y2-2pmy+4p=1.(*)设A(x1,y1),B(x2,y2),则y1+y2=2pm,y1y2=4p,则.因为,所以x1x2+y1y2=12,即4+4p=12,得p=2,抛物线的方程为y2=4x.…5分(Ⅱ)由(Ⅰ)(*)化为y2-4my+2=1.y1+y2=4m,y1y2=2.…6分设AB的中点为M,则|AB|=2xm=x1+x2=m(y1+y2)-4=4m2-4,①又,②由①②得(1+m2)(16m2-32)=(4m2-4)2,解得m2=3,.所以,直线l的方程为,或.…12分考点:抛物线的标准方程、直线与抛物线的相交问题、直线与圆相切问题.19.(1)见解析;(2)【解析】
(1)先证明四边形是菱形,进而可知,然后可得到平面,即可证明平面平面;(2)记AC,BE的交点为O,再取FG的中点P.以O为坐标原点,以射线OB,OC,OP分别为x轴、y轴、z轴的正半轴建立如图所示的空间直角坐标系,分别求出平面ABF和DBF的法向量,然后由,可求出二面角的余弦值,进而可求出二面角的正弦值.【详解】(1)证明:因为点为的中点,,所以,因为,所以,所以四边形是平行四边形,因为,所以平行四边形是菱形,所以,因为平面平面,且平面平面,所以平面.因为平面,所以平面平面.(2)记AC,BE的交点为O,再取FG的中点P.由题意可知AC,BE,OP两两垂直,故以O为坐标原点,以射线OB,OC,OP分别为x轴、y轴、z轴的正半轴建立如图所示的空间直角坐标系.因为底面ABCD是等腰梯形,,所以四边形ABCE是菱形,且,所以,则,设平面ABF的法向量为,则,不妨取,则,设平面DBF的法向量为,则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 总经理聘书合同协议
- 商场装修管理协议书范本
- 商场接手转让店铺合同协议
- 2025签订合同注意事项范文
- 歌曲合同协议
- 快递进村合同协议书范本
- 正规视频制作合同协议
- 2025煤炭合作开发合同范本
- 商场商铺出售合同协议
- 商业介绍费合同协议
- GB/T 11085-1989散装液态石油产品损耗
- 超音速流动与燃烧的大涡模拟基础课件
- GXH-3011A1便携式红外线CO分析仪
- NYT 393-绿色食品 农药使用准则
- 2022年四川省阿坝州中考数学试卷及解析
- 综采工作面末采安全技术措施
- 实验幼儿园大三班一周活动计划表
- 缅怀申齐创始人——吴齐南先生
- 密封圈定位套零件的机械加工夹具设计说明书
- CKE2500 250t履带式起重机
- 浅谈跨文化敏感度及其测量
评论
0/150
提交评论