小升初数学专项复习:长方体和正方体的认识、周长、面积与体积(原卷版+解析)_第1页
小升初数学专项复习:长方体和正方体的认识、周长、面积与体积(原卷版+解析)_第2页
小升初数学专项复习:长方体和正方体的认识、周长、面积与体积(原卷版+解析)_第3页
小升初数学专项复习:长方体和正方体的认识、周长、面积与体积(原卷版+解析)_第4页
小升初数学专项复习:长方体和正方体的认识、周长、面积与体积(原卷版+解析)_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

基础版(通用)

2022-2023学年小升初数学精讲精练专题汇编讲义

第17讲长方体和正方体的认识、周长、面积与体积

知识篙井

知识点一:长方体和正方体的认识

名称长方体正方体

N高

1或

图形裁

长棱棱

-

展开图匚

面6个6个

相同点棱12条12条

顶点8个8个

6个面一般是长方形,也可

面的特点6个面都是相同的正方形

能有2个相对的是正方形

不同点

面的大小相对的面的面积相等6个面的面积都相等

棱长相对的棱的长度相等6条棱的长度都相等

联系正方体是特殊的长方体

知识点二:长方体和正方体的表面积

1.表面积:一个立体图形所有面的面积总和叫作它的表面积。

2.长方体和正方体的,表面积。

(1)长方体的表面积=2X(长义宽+长X高+宽义高),用字母表示为:S二

2(ab+ah+bh)

⑵正方体的表面积=6X棱长X棱长,用字母表示为:S=6a2o

知识点三:长方体和正方体的体积

1.体积:一个立体图形所占空间的大小叫作它的体积。

2.长方体的体积(容积)=长X宽X高,用字母表示为:V=abh

3.正方体的体积(容积)=棱长X棱长X棱长,用字母表示为:V=a3

提高达标百分练一

一.选择题(共5小题,满分10分,每小题2分)

1.(2分)(2022•红谷滩区)把一个正方体铁块熔铸成一个长方体铁块,正确的是()

A.体积变小,表面积不变B.体积不变,表面积变了

C.体积变大,表面积变大D.无法确定

2.(2分)(2022*双台子区)一盒酸奶,外包装是长方体,包装上标注“净含量650位

“实际量得外包装长8c〃,宽5cm,高15c侬根据这些数据,你认为标注的净含量是

()

A.真实的B.虚假的,过大

C.虚假的,过小D.无法确定真假

3.(2分)(2022•湛江)一个长4分米,宽3分米,高5分米的长方体鱼缸,倒入水后

量得水深3.5分米,倒入的水是()升。

A.42B.52.5C.60

4.(2分)(2022・龙岗区)2020年3月12日,中国首班抗疫援外专家组包机飞越9619

公里驰援意大利,机上载着9名医疗专家和180立方米医疗物资。这批物资空运到

达罗马后,要通过大货车运到医院,假设大货车的车厢里面长4米,宽2米,高3

米,请问至少需要()辆这样的大货车才能一次性全部装完。

A.7B.8C.9D.10

5.(2分)(2022・崇川区)一个封闭的玻璃缸,长8分米,宽5分米,高4分米,里面

水深2分米。现将这个玻璃缸以最小的面作为底面竖直摆放,缸中水的深度是()

分米。

A.2B.2.5C.3.2D.4

二.填空题(共9小题,满分20分)

6.(2分)(2022•潍城区)把4个棱长是4曲的正方体木块拼成一个表面积最小的长方

体,这个长方体的表面积是dma

7.(2分)(2022«金湾区)如果把两个正方体拼成一个长方体,表面积减少了72c/,

那么一个正方体的棱长是cm,拼成的长方体的体积是cm»

8.(2分)(2022«泗水县)将3个棱长都是ac勿的正方体拼成一个长方体(如图),拼

成的长方体的表面积比拼前3个正方体的表面积之和减少了cmo

9.(2分)(2022-陵水县)用铁丝做一个长方体框架,长30厘米,宽20厘米,高10

厘米。要用铁丝厘米,如果要在这个框架外面包一层铁皮,至少需要铁皮

平方厘米。(接口处忽略不计)

10.(2分)(2022・陇县)长方体的长、宽、高分别是6曲、5血、4曲,表面积是dm,

体积是dmQ

11.(2分)(2022.香洲区)如图,在棱长是4曲的正方体中挖去一个棱长是1曲的小

正方体,剩余部分的体积是dmo

12.(3分)(2022.崇川区)六一儿童节当天,妈妈给乐乐兄妹三人分别准备了一盒礼

品(如图),如果将这三盒礼品包装成一个礼包,包装成的礼包长厘米、宽

厘米、高厘米时最节省包装纸;这样包装成的礼包至少要用平方

厘米的包装纸。

15

13.(3分)(2022・泉州模拟)小伟要设计一个长方体纸皮盒子,使它能装下1000块长

方体橡皮(如图)。他测出这块橡皮的长、宽、高分别为4.5cm、1.5cm、1cm。

从上面的算式中可以看出,小伟设计的方体盒子长是cm,宽是cm,

高是cm。(纸皮盒子的厚度忽略不计)

4.5X1.5X1=6.75(cm2)

6.75X1000=6750(cm2)

/\

45X150

/\

15X10

14.(2分)(2022.运城)一个长方体的高截去2厘米,表面积减少了24平方厘米,剩

下的部分正好是正方体,正方体的表面积是平方厘米,原来长方体的表面

积是平方厘米。

三.判断题(共5小题,满分10分,每小题2分)

15.(2分)(2023«梁子湖区模拟)正方体的棱长扩大到原来的4倍,表面积和体积就

扩大到原来的9倍。(判断对错)

16.(2分)(2022.斗门区)在一个棱长为1分米的正方体的8个角上,各锯下一个棱

长为1厘米的正方体,现在它的表面积和体积都变小了。(判断对错)

17.(2分)(2022・大埔县)一个正方体的棱长总和是24cm,它的表面积是24中。

(判断对错)

18.(2分)(2021秋•岳阳楼区期末)棱长6米的正方体,表面积与体积相等.(判

断对错)

19.(2分)(2021•鱼台县)一个正方体的棱长扩大3倍,它的表面积扩大6倍,体积

扩大9倍。(判断对错)

四.解答题(共10小题,满分60分,每小题6分)

20.(6分)(2022-黄埔区)吴老师买了一套新房,客厅长6米,宽4米,高3米。请

同学们帮吴老师算一算装修所需要的部分材料。

(1)客厅准备用边长5分米的方砖铺地面,需要多少块?

(2)准备粉刷客厅的四周墙壁和顶面,门窗、电视墙等10平方米不粉刷,实际粉刷

的面积是多少平方米?

21.(6分)(2022.昌平区)学校科技小组制做了一个长方体水漏,这个水漏长2.5分

米,宽1.5分米,高2分米。经过试验,这个水漏装满水全部漏完要6小时。这个

水漏平均每小时漏多少升水?

22.(6分)(2022-薪春县)如图,将一块长方形铁皮的四个角分别减去边长是2分米

的正方形,求把它围成长方体的容积。(单位:分米)

8

12

23.(6分)(2022・大埔县)现有如图放置的长方体容器力和水深24厘米的长方体容器

B,现要将8中的水倒进一部分在力中,使两个容器水的高度相同,求这时水的高度

是多少厘米?

24.(6分)(2022•忠县)游乐场内一个长方形儿童游泳池,长25/77,宽12.56m,深1.2加,

如果用直径20cm的进水管向游泳池里注水,水流速度按每分100W计算。注满一池

水要多长时间?

25.(6分)(2022・和平区)用一根长48曲的铁丝作一个长方体框架,使它的高为6dm,

长、宽的比为1:1o再把它的五个面糊上纸,做成一个长方体的灯笼,至少需要多

少平方分米的纸?

26.(6分)(2022.中山区)惠民健身中心新建了一个长50米,宽30米,深2.5米的

游泳池。

(1)在游泳池的四壁和底面贴上面积是0.25平方米的正方形瓷砖,至少需要多少

块?

(2)在游泳池内注水1.5米深,需要多少立方米的水?

27.(6分)(2022.吴中区)李师傅要制作一个无盖的圆柱形水桶,用下图所示的长方

形铁皮做侧面,要使水桶的容积尽可能大。

(1)应该选用哪张正方形铁皮制作底面?(通过计算说明理由)

(2)这个水桶最多能装水多少升?

62.8cm

28.(6分)我们知道圆柱的侧面积=底面周长X高,如果把长方体的前、后、左、右四

个面称为侧面,那么长方体的侧面积可以用“底面周长X高”计算吗?请以如图的

长方体为例,说说你的想法。

29.(6分)(2022•洪泽区)一个高4.8分米的铁皮油桶,底面是边长2.5分米的正方

形(铁皮的厚度忽略不计)。把这样的一桶油注入容积是1.25升的瓶子里,需要装

多少瓶?

基础版(通用)

2022-2023学年小升初数学精讲精练专题汇编讲义

第17讲长方体和正方体的认识、周长、面积与体积

知识精讲

知识点一:长方体和正方体的认识

名称长方体正方体

马高或

图形

长榜棱

展开图

N1

~1

面6个6个

相同点棱12条12条

顶点8个8个

6个面一般是长方形,也可

面的特点6个面都是相同的正方形

能有2个相对的是正方形

不同点

面的大小相对的面的面积相等6个面的面积都相等

棱长相对的棱的长度相等6条棱的长度都相等

联系正方体是特殊的长方体

知识点二:长方体和正方体的表面积

1.表面积:一个立体图形所有面的面积总和叫作它的表面积。

2.长方体和正方体的,表面积。

⑴长方体的表面积=2X(长X宽+长X高+宽X高),用字母表示为:S=

2(ab+ah+bh)

⑵正方体的表面积=6X棱长X棱长,用字母表示为:S=6a2o

知识点三:长方体和正方体的体积

1.体积:一个立体图形所占空间的大小叫作它的体积。

2.长方体的体积(容积)=长X宽X高,用字母表示为:V=abh

3.正方体的体积(容积)=棱长X棱长X棱长,用字母表示为:V=a3

Vg提高达标百分练

选择题(共5小题,满分10分,每小题2分)

1.(2分)(2022•红谷滩区)把一个正方体铁块熔铸成一个长方体铁块,正确的是()

A.体积变小,表面积不变B.体积不变,表面积变了

C.体积变大,表面积变大D.无法确定

【思路点拨】在不考虑损耗的情况下,把一个正方体铁块无论铸成一个什么形状的铁

块,改变的形状、表面积,而体积不变。

【规范解答】解:把一个正方体铁块熔铸成一个长方体铁块,正确的是体积不变,表

面积变了。

故选:B。

【考点评析】一个不论什么形体的物体,熔铸另外形状的物体,体积不变,改变的形

状、表面积。

2.(2分)(2022*双台子区)一盒酸奶,外包装是长方体,包装上标注“净含量650位

“实际量得外包装长8羽,宽5cm,高15cm。根据这些数据,你认为标注的净含量是

()

A.真实的B.虚假的,过大

C.虚假的,过小D.无法确定真假

【思路点拨】根据长方体的体积=长乂宽X高,代入数据求出长方体的体积,再和

650位比较大小即可。

【规范解答】解:8X5X15

=40X15

=600(立方厘米)

600立方厘米=600〃

600<650

所以标注的净含量是虚假的,过大。

故选:Bo

【考点评析】熟练掌握长方体体积的计算方法是解题的关键。

3.(2分)(2022•湛江)一个长4分米,宽3分米,高5分米的长方体鱼缸,倒入水后

量得水深3.5分米,倒入的水是()升。

A.42B.52.5C.60

【思路点拨】水的形状是长4分米,宽3分米,高3.5分米的长方体,利用体积计算

公式解答即可。

【规范解答】解:根据题意,水的高度是3.5分米,

所以水的体积:

4X3X3.5=42(立方分米)

42立方分米=42升

答:倒入水的体积是42升。

故选:4

【考点评析】本题是考查了长方体的体积的计算,根据题意解答即可。

4.(2分)(2022・龙岗区)2020年3月12日,中国首班抗疫援外专家组包机飞越9619

公里驰援意大利,机上载着9名医疗专家和180立方米医疗物资。这批物资空运到

达罗马后,要通过大货车运到医院,假设大货车的车厢里面长4米,宽2米,高3

米,请问至少需要()辆这样的大货车才能一次性全部装完。

A.7B.8C.9D.10

【思路点拨】根据长方体的体积公式/=abh,先求出大货车车厢的体积,再用这批

物资的体积除以一辆大货车的体积,解答即可。

【规范解答】解:180+(4X2X3)

=1804-24

=7.5(辆)

7.5辆"8辆

答:至少需要8辆这样的大货车才能一次性全部装完。

故选:B。

【考点评析】此题考查长方体的体积公式P=ab/7在实际生活中的应用,关键是熟记

公式。

5.(2分)(2022-崇川区)一个封闭的玻璃缸,长8分米,宽5分米,高4分米,里面

水深2分米。现将这个玻璃缸以最小的面作为底面竖直摆放,缸中水的深度是()

分米。

A.2B.2.5C.3.2D.4

【思路点拨】根据体积的意义可知,因为玻璃缸是密封的,所以玻璃缸无论横放、还

是竖放,玻璃缸内水的体积不变,根据长方体的体积公式:V=Sh,那么h=V・S,

把数据代入公式解答。

【规范解答】解:8X5X24-(5X4)

=804-20

=4(分米)

答:缸中水的深度是4分米。

故选:D。

【考点评析】此题主要考查长方体体积公式的灵活运用,关键是熟记公式。

二.填空题(共9小题,满分20分)

6.(2分)(2022•潍城区)把4个棱长是4曲的正方体木块拼成一个表面积最小的长方

体,这个长方体的表面积是256dmo

【思路点拨】将4个正方体排成2排,且每排两个时,拼成的长方体的表面积最小,

这个长方体的长宽高分别是8分米、8分米、4分米,从而分别代入长方体的表面积

公式即可求出其表面积。

【规范解答】解:将4个正方体排成2排,且每排两个时,拼成的长方体的表面积最

小,这个长方体的长宽高分别是8分米、8分米、4分米

(8X4+4X8+8X8)X2

=(32+32+64)X2

=128X2

=256(平方分米)

答:拼成的长方体的表面积是256平方分米。

故答案为:256„

【考点评析】解答此题的关键是明白:将4个正方体排成2排,且每排两个时,拼成

的长方体的表面积最小。

7.(2分)(2022.金湾区)如果把两个正方体拼成一个长方体,表面积减少了72碗,

那么一个正方体的棱长是6cm,拼成的长方体的体积是432cmo

【思路点拨】两个正方体拼成一个长方体后,相当于减少了两个正方体的面,所以拼

组后,表面积比原来两个正方体减少2个小正方体面的面积之和,据此解答即可求出

一个面的面积,进而求出棱长;拼成后的长方体的体积是正方体体积的2倍,由此利

用正方体的体积公式即可求出这个长方体的体积。

【规范解答】解:724-2=36(平方厘米)

因为6X6=36(平方厘米),可知正方体的棱长是6厘米。

6X6X6X2

=216X2

=432(立方厘米)

答:正方体的棱长是6cm,拼成的长方体的体积是432立方厘米。

故答案为:6;432o

【考点评析】本题是考查图形的切拼问题、长方体和正方体的体积,解答此题的关键

是理解两个正方体拼成一个长方体后,减少了几个正方体的面。

8.(2分)(2022•泗水县)将3个棱长都是aw的正方体拼成一个长方体(如图),拼

2

成的长方体的表面积比拼前3个正方体的表面积之和减少了4acmo

【思路点拨】拼成长方体后表面积减少了正方体4个面的面积,据此求出正方体的一

个面的面积,再乘4即可解答。

【规范解答】解:aXaX4=4a(.cm')

答:表面积减少了4a2c/wo

故答案为:4a%

【考点评析】明确拼成的长方体的表面积比拼前3个正方体的表面积之和减少的面积

就是4个边长为acm的正方形的面积和是解题的关键。

9.(2分)(2022*陵水县)用铁丝做一个长方体框架,长30厘米,宽20厘米,高10

厘米。要用铁丝240厘米,如果要在这个框架外面包一层铁皮,至少需要铁皮

2200平方厘米。(接口处忽略不计)

【思路点拨】求至少需要多长的铁丝就是求长方体的棱长总和,长方体的棱长总和=

(长+宽+高)X4;求至少需要多少平方厘米的铁皮,就是求长方体的表面积,根据

长方体的表面积公式:S=(aZa*bh)X2,把数据代入公式解答。

【规范解答】解:(30+20+10)X4

=60X4

=240(厘米)

(30X20+30X10+20X10)X2

=(600+300+200)X2

=1100X2

=2200(平方厘米)

答:要用铁丝240厘米,如果要在这个框架外面包一层铁皮,至少需要铁皮2200平

方厘米。(接口处忽略不计)

故答案为:240,2200o

【考点评析】此题主要考查长方体的棱长总和公式、表面积公式的灵活运用。

10.(2分)(2022・陇县)长方体的长、宽、高分别是6面、5dm、4dm,表面积是148

dm,体积是120dma

【思路点拨】根据长方体的表面积公式:5=(ab+a/nbh')X2,体积公式:/=abh,

把数据代入公式解答。

【规范解答】解:(6X5+6X4+5X4)X2

=(30+24+20)X2

=74X2

=148(平方厘米)

6X5X4=120(立方厘米)

答:它的表面积是148加,体积是120加。

故答案为:148,120o

【考点评析】此题主要考查长方体的表面积公式、体积公式的灵活运用,关键是熟记

公式。

11.(2分)(2022.香洲区)如图,在棱长是4曲的正方体中挖去一个棱长是1曲的小

正方体,剩余部分的体积是63dmo

【思路点拨】根据正方体的特征,在大正方体的顶点处挖去一个小正方体后,体积减

少了,但表面积不变。根据正方体的体积公式:V=a,把数据分别代入公式解答。

【规范解答】解:4X4X4-1X1X1

=64-1

=63(立方厘米)

答:剩余部分的体积是63加。

故答案为:63o

【考点评析】此题主要考查正方体的体积公式的灵活运用,关键是熟记公式。

12.(3分)(2022.崇川区)六一儿童节当天,妈妈给乐乐兄妹三人分别准备了一盒礼

品(如图),如果将这三盒礼品包装成一个礼包,包装成的礼包长20厘米、宽

18厘米、高12厘米时最节省包装纸:这样包装成的礼包至少要用1632平

方厘米的包装纸。

【思路点拨】根据长方体表面积的意义可知,把3个礼品盒的最大面重合摞起来包装

最节省包装纸,也就是包装成的礼包长20厘米,宽18厘米,高(4X3)厘米,根据

长方体的表面积公式:S=(a加a/7+助)X2,把数据代入公式解答。

【规范解答】解:4X3=12(厘米)

(20X18+20X12+18X12)X2

=(360+240+216)X2

=816X2

=1632(平方厘米)

答:包装成的礼包长20厘米、宽18厘米、高12厘米时最节省包装纸;这样包装成

的礼包至少要用1632平方厘米的包装纸。

故答案为:20,18,12,1632o

【考点评析】此题主要考查长方体表面积公式的灵活运用,关键是熟记公式。

13.(3分)(2022・泉州模拟)小伟要设计一个长方体纸皮盒子,使它能装下1000块长

方体橡皮(如图)。他测出这块橡皮的长、宽、高分别为4.5的、1.5cm、1cm。

从上面的算式中可以看出,小伟设计的方体盒子长是45cm,宽是15cm,高

是10cm。(纸皮盒子的厚度忽略不计)

4.5X1.5X1=6.75(cm2)

6.75X1000=6750(cm2)

/\

45X150

/\

15X10

【思路点拨】通过观察上面的算式可知,小伟设计的长方体盒子的长是45厘米,宽

是15厘米,高是10厘米。据此解答。

【规范解答】解:这块橡皮的长、宽、高分别为4.5cm、1.5cm、1cm。

通过观察上面的算式可知,小伟设计的长方体盒子的长是45厘米,宽是15厘米,高

是10厘米。

故答案为:45,15,10o

【考点评析】此题考查的目的是理解掌握长方体的特征及应用,长方体的体积(容积)

的意义及应用。

14.(2分)(2022.运城)一个长方体的高截去2厘米,表面积减少了24平方厘米,剩

下的部分正好是正方体,正方体的表面积是54平方厘米,原来长方体的表面积

是78平方厘米。

【思路点拨】根据题意,高减少2厘米,表面积比原来减少24平方厘米,表面积减

少的只是4个侧面的面积,减少的4个侧面是完全相同的长方形,用减少的面积除以

4求出减少的一个面的面积,用面积除以宽(2厘米),即可求出正方体的棱长,再根

据正方体的表面积公式:5=6a2,长方体的表面积公式:S=(a卅ah^bh)X2,把数

据代入解答即可。

【规范解答】解:244-44-2

=64-2

=3(厘米)

3+2=5(厘米)

3X3X6

=9X6

=54(平方厘米)

(3X3+3X5+3X5)X2

=(9+15+15)X2

=39X2

=78(平方厘米)

答:正方体的表面积是54平方厘米,原来长方体的表面积是78平方厘米。

故答案为:54,78o

【考点评析】此题主要考查正方体、长方体表面积公式的灵活运用,关键是熟记公式。

三.判断题(共5小题,满分10分,每小题2分)

15.(2分)(2023*梁子湖区模拟)正方体的棱长扩大到原来的4倍,表面积和体积就

扩大到原来的9倍。义(判断对错)

【思路点拨】正方体体积公式:V=a,表面积:公式:S=6,。根据因数与积的变化

规律:正方体表面积扩大的倍数是棱长扩大倍数的平方,体积扩大的倍数是棱长扩大

倍数的立方,据此解答。

【规范解答】解:一个正方体的棱长扩大到原来的4倍,则表面积扩大4X4=16倍,

体积扩大4X4X4=64倍。

故答案为:X。

【考点评析】此题主要根据因数与积的变化规律和正方体的表面积公式、体积公式进

行解答。

16.(2分)(2022*斗门区)在一个棱长为1分米的正方体的8个角上,各锯下一个棱

长为1厘米的正方体,现在它的表面积和体积都变小了。义(判断对错)

【思路点拨】在正方体的角上锯下一个小正方体,虽然少了3个小正方形面,但锯下

后又多出了3个小正方形面,所以大正方体的表面积不变,体积变小了。所以在一个

棱长为1分米的正方体的8个角上,各锯下个棱长为1厘米的正方体,现在它的表面

积与原来的表面积是相等的,体积变小了。据此解答。

【规范解答】解:在一个棱长为1分米的正方体的8个角上,各锯下个棱长为1厘米

的正方体,现在它的表面积与原来的表面积是相等的,体积变小了。所以原题干说法

错误。

故答案为:X。

【考点评析】本题主要考查正方体的截面.挖去的正方体中相对的面的面积都相等。

17.(2分)(2022・大埔县)一个正方体的棱长总和是24cm,它的表面积是24cm%J

(判断对错)

【思路点拨】正方体的12条棱的长度都相等,用棱长总和除以12求出棱长,再根据

正方体的表面积公式:5=6a2,求出它的表面积,然后与24c/t/进行比较即可。

【规范解答】解:244-12=2(cnf)

2X2X6=24(cm)

答:它的表面积是24cm2。

故答案为:Vo

【考点评析】此题主要考查正方体的棱长总和公式、表面积公式的灵活运用。

18.(2分)(2021秋•岳阳楼区期末)棱长6米的正方体,表面积与体积相等.(判

断对错)

【思路点拨】首先要理解正方体的表面积和体积的意义,正方体的表面积是指6个面

的总面积;正方体的体积是指它所占空间的大小;它们不是同类量,所以无法进行比

较.

【规范解答】解:根据分析:正方体的表面积和体积不是同类量,所以无法进行比较.

故答案为:X.

(考点评析】此题解答关键是理解表面积和体积的意义,明确只有同类量才能比较大

小,不是同类量根本无法进行比较.

19.(2分)(2021-鱼台县)一个正方体的棱长扩大3倍,它的表面积扩大6倍,体积

扩大9倍。X(判断对错)

【思路点拨】设原来的正方体的棱长为a,则后来的正方体的棱长为3a,根据“正方

体的表面积=棱长2X6”分别求出原来和后来的正方体的表面积,根据“正方体的体

积=棱长3”分别求出原来和后来的正方体的体积,然后分别进行比较,即可得出结

论。

【规范解答】解:设原来的正方体的棱长为a,则后来的正方体的棱长为3a,

表面积扩大:[(3aX3a)X6]H-(aX6)

=(54a2)4-(6才)

=9

体积扩大:(3a)34-a3

=27a34-a3

=27

答:一个正方体的棱长扩大3倍,它的表面积扩大9倍,体积扩大27倍。

故答案为:X。

【考点评析】此题考查了正方体的表面积和体积的计算方法,应明确:正方体的棱长

扩大〃倍,表面积扩大方倍,体积扩大??倍。

四.解答题(共10小题,满分60分,每小题6分)

20.(6分)(2022-黄埔区)吴老师买了一套新房,客厅长6米,宽4米,高3米。请

同学们帮吴老师算一算装修所需要的部分材料。

(1)客厅准备用边长5分米的方砖铺地面,需要多少块?

(2)准备粉刷客厅的四周墙壁和顶面,门窗、电视墙等10平方米不粉刷,实际粉刷

的面积是多少平方米?

【思路点拨】(1)根据长方形的面积公式:S=ab,求出客厅地面的面积,根据正方

形的面积公式:S=a,求出每块方砖的面积,然后根据“包含”除法的意义,用除

法解答。

(2)由于地面不需要粉刷,所以粉刷的面积等于这个长方体的上面和4面墙壁的面

积,再减去门窗电视墙的面积,就是实际粉刷的面积,根据长方体的表面积公式解答。

【规范解答】解:(1)5分米=0.5米

6X44-(0.5X0.5)

=244-0.25

=96(块)

答:需要96块。

(2)6X4+6X3X2+4X3X2-10

=24+36+24-10

=84-10

=74(平方米)

答:实际粉刷的面积是74平方米。

【考点评析】此题主要考查长方形、正方形的面积公式,长方体的表面积公式、圆柱

的体积公式的灵活运用,关键是熟记公式。

21.(6分)(2022・昌平区)学校科技小组制做了一个长方体水漏,这个水漏长2.5分

米,宽1.5分米,高2分米。经过试验,这个水漏装满水全部漏完要6小时。这个

水漏平均每小时漏多少升水?

【思路点拨】根据长方体的容积=长乂宽X高,计算出这个水漏里水的体积是多少,

再用这个水漏里水的体积除以时间,计算出这个水漏平均每小时漏多少升水。

【规范解答】解:2.5X1.5X2

=3.75X2

=7.5(立方分米)

7.5立方分米=7.5升

7.54-6=1.25(升)

答:这个水漏平均每小时漏1.25升水。

【考点评析】本题解题关键是熟练掌握长方体的容积的计算方法和体积容积单位换算

的方法。

22.(6分)(2022・薪春县)如图,将一块长方形铁皮的四个角分别减去边长是2分米

的正方形,求把它围成长方体的容积。(单位:分米)

8

12

【思路点拨】根据题意,折成的长方体容器的长、宽、高分别为(12-2X2)分米、

(8-2X2)分米、2分米,又因长方体的体积=长乂宽X高,将数据代入公式即可

求出这个容器的容积。

【规范解答】解:(12-2X2)X(8-2X2)X2

=8X4X2

=32X2

=64(立方分米)

答:它围成长方体的容积是64立方分米。

【考点评析】此题主要考查长方体体积的计算方法,关键是求出长方体的长、宽、高。

23.(6分)(2022・大埔县)现有如图放置的长方体容器4和水深24厘米的长方体容器

B,现要将6中的水倒进一部分在4中,使两个容器水的高度相同,求这时水的高度

是多少厘米?

【思路点拨】根据长方体的体积=长X宽X高,代入数据求出长方体容器6中水的体

积,4寻6中的水倒一部分到4使两个容器水的高度相同,用长方体容器6中水的体

积除以两个容器的底面积之和,即可求解。

【规范解答】解:30X20X24

=600X24

=14400(立方厘米)

144004-(30X20+40X30)

=144004-1800

=8(厘米)

答:这时水的高度是8厘米。

【考点评析】明确长方体的计算方法并能灵活运用公式解答是解题的关键。

24.(6分)(2022•忠县)游乐场内一个长方形儿童游泳池,长25%宽12.56%深1.2%

如果用直径20切的进水管向游泳池里注水,水流速度按每分100W计算。注满一池

水要多长时间?

【思路点拨】先依据长方体的体积(容积)公式求出水池的容积,再用圆柱

的体积公式,=n/力求出每分钟注水的体积,然后依据除法的意义,用水池的容积

除以每分钟注水的体积,解答即可。

【规范解答】解:20厘米=0.2米

0.24-2=0.1(米)

25X12.56X1.24-(3.14X0.12X100)

=376.84-3.14

=120(分钟)

答:注满一池水要120分钟。

【考点评析】此题主要考查长方体和圆柱的体积的计算方法在实际生活中的应用。

25.(6分)(2022・和平区)用一根长48曲的铁丝作一个长方体框架,使它的高为6dm,

长、宽的比为1:1o再把它的五个面糊上纸,做成一个长方体的灯笼,至少需要多

少平方分米的纸?

【思路点拨】根据长方体的棱长总和=(长+宽+高)X4,用棱长总和除以4求出长、

宽、高的和,高已知,再求出长与宽的和,然后利用按比例分配的方法分别求出长与

宽;把它的侧面和底面糊上纸,做成一个长方体的灯笼,是求剩下5个面的总面积,

根据长方体的表面积公式(a〃bh)X2求解即可。

【规范解答】解:484-4-6

=12-6

=6(分米)

64-(1+1)

=64-2

=3(分米)

3X3+(3X6+3X6)X2

=9+(18+18)X2

=9+36X2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论