




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省玉溪民族中学2025年高二下数学期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一个口袋内有12个大小形状完全相同的小球,其中有n个红球,若有放回地从口袋中连续取四次(每次只取一个小球),恰好两次取到红球的概率大于,则n的值共有()A.1个 B.2个 C.3个 D.4个2.若抛物线y2=2px(p>0)的焦点是椭圆的一个焦点,则p=A.2 B.3C.4 D.83.已知函数,若在上有解,则实数的取值范围为()A. B. C. D.4.已知,则()A. B. C.2 D.5.已知三棱锥的所有顶点都在球的球面上,,,若三棱锥体积的最大值为2,则球的表面积为()A. B. C. D.6.下列关于“频率”和“概率”的说法中正确的是()(1)在大量随机试验中,事件出现的频率与其概率很接近;(2)概率可以作为当实验次数无限增大时频率的极限;(3)计算频率通常是为了估计概率.A.(1)(2) B.(1)(3) C.(2)(3) D.(1)(2)(3)7.设曲线在点处的切线方程为,则()A.1 B.2 C.3 D.48.已知,记,则M与N的大小关系是()A. B. C. D.不能确定9.长方体中,,,则直线与平面ABCD所成角的大小()A. B. C. D.10.既是偶函数又在区间上单调递减的函数是()A. B. C. D.11.若函数在(0,2)内单调递减,则实数的取值范围为()A.≥3 B.=3 C.≤3 D.0<<312.从5名女教师和3名男教师中选出一位主考、两位监考参加2019年高考某考场的监考工作.要求主考固定在考场前方监考,一女教师在考场内流动监考,另一位教师固定在考场后方监考,则不同的安排方案种数为()A.105 B.210 C.240 D.630二、填空题:本题共4小题,每小题5分,共20分。13.已知直线l的普通方程为x+y+1=0,点P是曲线上的任意一点,则点P到直线l的距离的最大值为______.14.在中,,则_______.15.在正数数列an中,a1=1,且点an,an-1n≥2在直线16.已知函数,其中为实数,若对恒成立,且,则的单调递增区间是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线:,点为直线上任一点,过点作抛物线的两条切线,切点分别为,,(1)证明,,三点的纵坐标成等差数列;(2)已知当点坐标为时,,求此时抛物线的方程;(3)是否存在点,使得点关于直线的对称点在抛物线上,其中点满足,若存在,求点的坐标;若不存在,说明理由.18.(12分)设命题p:函数f(x)=x2-ax命题q:方程x2+ay2命题“p∨q”为真命题,“p∧q”为假命题,求实数a的取值范围.19.(12分)某部门为了解人们对“延迟退休年龄政策”的支持度,随机调查了人,其中男性人.调查发现持不支持态度的有人,其中男性占.分析这个持不支持态度的样本的年龄和性别结构,绘制等高条形图如图所示.(1)在持不支持态度的人中,周岁及以上的男女比例是多少?(2)调查数据显示,个持支持态度的人中有人年龄在周岁以下.填写下面的列联表,问能否有的把握认为年龄是否在周岁以下与对“延迟退休年龄政策”的态度有关.参考公式及数据:,.20.(12分)已知函数.(1)讨论函数的单调性;(2)当时,,求的取值范围.21.(12分)已知,是正数,求证:.22.(10分)英语老师要求学生从星期一到星期四每天学习3个英语单词:每周五对一周内所学单词随机抽取若干个进行检测(一周所学的单词每个被抽到的可能性相同)(1)英语老师随机抽了个单词进行检测,求至少有个是后两天学习过的单词的概率;(2)某学生对后两天所学过的单词每个能默写对的概率为,对前两天所学过的单词每个能默写对的概率为,若老师从后三天所学单词中各抽取一个进行检测,求该学生能默写对的单词的个数的分布列和期望.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
设每次取到红球的概率为p,结合独立事件的概率的计算公式,求得,再由,即可判定,得到答案.【详解】由题意,设每次取到红球的概率为p,可得,即,解得,因为,所以,所以或6或7.故选:C.本题主要考查了独立事件的概率的计算公式及其应用,其中解答中正确理解题意,合理利用独立事件的概率的计算公式,求得相应的概率的取值范围是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.2、D【解析】
利用抛物线与椭圆有共同的焦点即可列出关于的方程,即可解出,或者利用检验排除的方法,如时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A,同样可排除B,C,故选D.【详解】因为抛物线的焦点是椭圆的一个焦点,所以,解得,故选D.本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养.3、D【解析】
首先判断函数单调性为增.,将函数不等式关系转化为普通的不等式,再把不等式转换为两个函数的大小关系,利用图像得到答案.【详解】在定义域上单调递增,,则由,得,,则当时,存在的图象在的图象上方.,,则需满足.选D.本题考查了函数的单调性,解不等式,将不等式关系转化为图像关系等知识,其中当函数单调递增时,是解题的关键.4、B【解析】
直接利用和角公式和同角三角函数关系式的应用求出结果.【详解】由,得,则,故.故选B本题考查的知识要点:三角函数关系式的恒等变换,和角公式的应用,主要考察学生的运算能力和转换能力,属于基础题型.5、D【解析】分析:根据棱锥的最大高度和勾股定理计算球的半径,从而得出外接球的表面积.详解:因为,所以,过的中点作平面的垂下,则球心在上,设,球的半径为,则棱锥的高的最大值为,因为,所以,由勾股定理得,解得,所以球的表面积为,故选D.点睛:本题考查了有关球的组合体问题,以及三棱锥的体积的求法,解答时要认真审题,注意球的性质的合理运用,求解球的组合体问题常用方法有(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)利用球的截面的性质,根据勾股定理列出方程求解球的半径.6、D【解析】
利用频率和概率的定义分析判断得解.【详解】(1)在大量随机试验中,事件出现的频率与其他概率很接近,所以该命题是真命题;(2)概率可以作为当实验次数无限增大时频率的极限,所以该命题是真命题;(3)计算频率通常是为了估计概率,所以该命题是真命题.故选D本题主要考查频率和概率的关系,意在考查学生对这些知识的理解掌握水平.7、D【解析】
利用导数的几何意义得直线的斜率,列出a的方程即可求解【详解】因为,且在点处的切线的斜率为3,所以,即.故选:D本题考查导数的几何意义,考查运算求解能力,是基础题8、B【解析】
作差并因式分解可得M-N=,由,∈(0,1)可作出判断.【详解】由题意可得M-N====,∵,b∈(0,1),∴(b-1)∈(-1,0),(-1)∈(-1,0),∴(b-1)(-1)>0,∴M>N
故选B.本题考查作差法比较式子大小,涉及因式分解,属基础题.9、B【解析】
连接,根据长方体的性质和线面角的定义可知:是直线与平面ABCD所成角,在底面ABCD中,利用勾股定理可以求出,在中,利用锐角三角函数知识可以求出的大小.【详解】连接,在长方体中,显然有平面ABCD,所以是直线与平面ABCD所成角,在底面ABCD中,,在中,,故本题选B.本题考查了线面角的求法,考查了数学运算能力.10、D【解析】
试题分析:根据函数和都是奇函数,故排除A,C;由于函数是偶函数,周期为,在上是减函数,在上是增函数,故不满足题意条件,即B不正确;由于函数是偶函数,周期为,且在上是减函数,故满足题意,故选D.考点:余弦函数的奇偶性;余弦函数的单调性.11、A【解析】
由题可得:在恒成立.整理得:在恒成立.求得:,即可得:,问题得解.【详解】由题可得:在恒成立.即:在恒成立.又,所以.所以故选A本题主要考查了导数与函数单调性的关系,还考查了恒成立问题解决方法,考查转化能力,属于中档题.12、B【解析】试题分析:由题意得,先选一名女教师作为流动监控员,共有种,再从剩余的人中,选两名监考员,一人在前方监考,一人在考场后监考,共有种,所以不同的安排方案共有种方法,故选B.考点:排列、组合的应用.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据曲线的参数方程,设,再由点到直线的距离以及三角函数的性质,即可求解.【详解】由题意,设,则到直线的距离,故答案为.本题主要考查了曲线的参数方程的应用,其中解答中根据曲线的参数方程设出点的坐标,利用点到直线的距离公式和三角函数的性质求解是解答的关键,着重考查了推理与运算能力,属于基础题.14、【解析】
由正弦定理的边化角公式化简得出,再次利用正弦定理的边化角公式得出.【详解】由正弦定理的边化角公式得出即所以故答案为:本题主要考查了正弦定理的边化角公式,属于中档题.15、2【解析】
在正数数列an中,由点an,an-1在直线x-2y=0上,知a【详解】由题意,在正数数列an中,a1=1,且a可得an-2即an因为a1=1,所以数列所以Sn故答案为2n本题主要考查了等比数列的定义,以及等比数列的前n项和公式的应用,同时涉及到数列与解析几何的综合运用,是一道好题.解题时要认真审题,仔细解答,注意等比数列的前n项和公式和通项公式的灵活运用,着重考查了推理与运算能力,属于中档试题.16、【解析】
根据题设条件得出是函数的最大值或最小值,从而得到,结合,最后得到,再根据正弦函数的单调性得到所求函数的单调增区间.【详解】解:若对恒成立,则等于函数的最大值或最小值,即,则,又,即令,此时,满足条件令,解得.则的单调递增区间是.故答案为:.本题考查的重点是三角函数的单调区间以及形式变换,需要重点掌握.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2);(3)存在一点满足题意.【解析】
(1)设,对求导,则可求出在,处的切线方程,再联立切线方程分析即可.
(2)根据(1)中的切线方程,代入则可得到直线的方程,再联立抛物线求弦长列式求解即可.(3)分情况,当的纵坐标与两种情况,求出点的坐标表达式,再利用与垂直进行求解分析是否存在即可.【详解】(1)设,对求导有,故在处的切线方程为,即,又,故同理在处的切线方程为,联立切线方程有,化简得,即的纵坐标为,因为,故,,三点的纵坐标成等差数列.
(2)同(1)有在处的切线方程为,因为,所以,即,又切线过,则,同理,故均满足直线方程,即故直线,联立,则,即,解得,故抛物线:.(3)设,由题意得,则中点,又直线斜率,故设.又的中点在直线上,且中点也在直线上,代入得.又在抛物线上,则.所以或.即点或(1)当时,则,此时点满足(2)当时,对,此时,则.又.,所以,不成立,对,因为,此时直线平行于轴,又因为,故直线与直线不垂直,与题设矛盾,故时,不存在符合题意的点.综上所述,仅存在一点满足题意.本题考查了抛物线的双切线问题,需要求出在抛物线上的点的切线方程,再根据抛物线双切线的性质进行计算,同时要灵活运用抛物线的方程,属于难题.18、a<1【解析】分析:化简命题p可得a≤0,化简命题q可得0<a<1,由p∨q为真命题,p∧q为假命题,可得p,q一真一假,分两种情况讨论,对于p真q假以及p假q真分别列不等式组,分别解不等式组,然后求并集即可求得实数a的取值范围.详解:由于命题p:函数f(x)=x2-ax所以a≤0命题q:方程x2+ay2所以2a命题“p∨q”为真命题,“p∧q”为假命题,则p、①p真q假时:a≤0a≤0②p假q真综上所述:a的取值范围为:a<1点睛:本题通过判断或命题、且命题的真假,综合考查二次函数的单调性以及椭圆的标准方程与性质,属于中档题.解答非命题、且命题与或命题真假有关的题型时,应注意:(1)原命题与其非命题真假相反;(2)或命题“一真则真”;(3)且命题“一假则假”.19、(1)见解析;(2)见解析【解析】
(1)先求出周岁及以上的男性和女性的人数,再将男性和女性人数相比可得出答案;(2)先列出列联表,并计算出的观测值,根据临界值表找出犯错误的概率,即可对题中结论判断正误.【详解】(1)由已知可得持不支持态度的人中有男性人,由等高条形图可知这个男性中年龄在周岁及以上的有人;持不支持态度的人中有女性人,由等高条形图可知这个女性中年龄在周岁及以上的有人;故所求在持不支持态度的人中,周岁及以上的男女比例是.(2)由已知可得以下列联表:周岁以下周岁及以上总计不支持支持总计计算得的观测值,所以有的把握认为年龄是否在45周岁以下与对“延迟退休年龄政策”的态度有关.本题考查独立性检验,意在考查学生对独立性检验概率的理解和掌握情况,属于基础题.20、(1)详见解析(2)或【解析】
(1)将函数求导并化简,对分成两种情况,讨论函数的单调性.(2)原不等式即(),当时,上述不等式显然成立.当时,将不等式变为,构造函数,利用导数研究函数的单调性,由此求得的取值范围.【详解】解:(1).①若,当时,,在上单调递增;当时,,在上单调递减.②若,当时,,在上单调递减;当时,,在上单调递增.∴当时,在上单调递增,在上单调递减;当时,在上单调递减,在上单调递增.(2)(),当时,上不等式成立,满足题设条件;当时,,等价于,设,则,设(),则,∴在上单调递减,得.①当,即时,得,,∴在上单调递减,得,满足题设条件;②当,即时,,而,∴,,又单调递减,∴当,,得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司采购价格管理制度
- 娱乐设备器材管理制度
- 实验标本出境管理制度
- 安全隐患整改管理制度
- 大堂保安状态管理制度
- 市场刀具使用管理制度
- 公园室外消防管理制度
- 巡察整改合同管理制度
- 工地钥匙使用管理制度
- 工厂薪酬制度管理制度
- 2024中国糖尿病合并慢性肾脏病临床管理共识解读
- 附件1:肿瘤防治中心评审实施细则2024年修订版
- 第1课《观潮》(阅读理解) 2024-2025学年四年级语文上册(统编版)
- 2024年国家开放大学电大管理会计试题及答案.及答案
- 2025届高三政治最后一节课学科考前指导
- 城市绿化、园林绿化 投标方案(技术方案)
- Academic English智慧树知到期末考试答案章节答案2024年杭州医学院
- 2024电化学储能电站巡视检查项目表
- 2024年 陕西省西安市碑林区西北工业大学附属中学丘成桐少年班选拔初试数学试题
- 江苏省南通市海门区2023-2024学年七年级下学期期末数学试题
- 河南中考记叙文真题阅读专项训练10篇
评论
0/150
提交评论