




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市2025届数学高二第二学期期末综合测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在一个棱长为的正方体的表面涂上颜色,将其适当分割成棱长为的小正方体,全部放入不透明的口袋中,搅拌均匀后,从中任取一个,取出的小正方体表面仅有一个面涂有颜色的概率是()A. B. C. D.2.已知在R上是奇函数,且A.-2 B.2 C.-98 D.983.某校从6名学生干部(其中女生4人,男生2人)中选3人参加学校的汇演活动,在女生甲被选中的情况下,男生乙也被选中的概率为()A. B. C. D.4.如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,分别为63,98,则输出的()A.9 B.3 C.7 D.145.下列函数中,在定义域内单调的是()A. B.C. D.6.设m,n是两条不同的直线,α,β是两个不同的平面,给出下列四个命题:①若m∥n,m⊥β,则n⊥β;②若m∥α,m∥β,则α∥β;③若m∥n,m∥β,则n∥β;④若m⊥α,m⊥β,则α⊥β.其中真命题的个数为()A.1B.2C.3D.47.已知定义在上的连续奇函数的导函数为,当时,,则使得成立的的取值范围是()A. B. C. D.8.中,,则的值是()A. B. C. D.或9.已知二次函数在区间内有两个零点,则的取值范围为()A. B. C. D.10.已知,设函数若关于的不等式在上恒成立,则的取值范围为()A. B. C. D.11.下列关于“频率”和“概率”的说法中正确的是()(1)在大量随机试验中,事件出现的频率与其概率很接近;(2)概率可以作为当实验次数无限增大时频率的极限;(3)计算频率通常是为了估计概率.A.(1)(2) B.(1)(3) C.(2)(3) D.(1)(2)(3)12.已知是虚数单位,,则复数的共轭复数为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.二项式展开式中含项的系数是__________.14.设直线l:x+y﹣2=0的倾斜角为α,则α的大小为_____.15.设随机变量的概率分布列如下图,则___________.123416.棱长为的正四面体的高为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数.(1)当时,求关于的不等式的解集;(2)若在上恒成立,求的取值范围.18.(12分)如图,一条小河岸边有相距的两个村庄(村庄视为岸边上两点),在小河另一侧有一集镇(集镇视为点),到岸边的距离为,河宽为,通过测量可知,与的正切值之比为.当地政府为方便村民出行,拟在小河上建一座桥(分别为两岸上的点,且垂直河岸,在的左侧),建桥要求:两村所有人到集镇所走距离之和最短,已知两村的人口数分别是人、人,假设一年中每人去集镇的次数均为次.设.(小河河岸视为两条平行直线)(1)记为一年中两村所有人到集镇所走距离之和,试用表示;(2)试确定的余弦值,使得最小,从而符合建桥要求.19.(12分)已知:已知函数(Ⅰ)若曲线y=f(x)在点P(2,f(2))处的切线的斜率为﹣6,求实数a;(Ⅱ)若a=1,求f(x)的极值;20.(12分)交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:交强险浮动因素和浮动费率比率表浮动因素浮动比率上一年度未发生有责任道路交通事故下浮10%上两年度未发生有责任道路交通事故下浮上三年度未发生有责任道路交通事故下浮30%上一个年度发生一次有责任不涉及死亡的道路交通事故0%上一个年度发生两次及两次以上有责任不涉及死亡的道路交通事故上浮10%上一个年度发生有责任交通死亡事故上浮30%某机构为了解某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:类型A1A2A3A4A5A6数量105520155以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,,记为某同学家的一辆该品牌车在第四年续保时的费用,求的分布列与数学期望;(数学期望值保留到个位数字)(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.21.(12分)已知函数(为常数).(1)当时,讨论函数的单调性;(2)当时,若函数在上单调递增,求的取值范围.22.(10分)已知函数.(1)判断的奇偶性并证明你的结论;(2)解不等式
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
由在27个小正方体中选一个正方体,共有27种结果,满足条件的事件是取出的小正方体表面仅有一个面涂有颜色,有6种结果,根据古典概型及其概率的计算公式,即可求解.【详解】由题意,在27个小正方体中,恰好有三个面都涂色有颜色的共有8个,恰好有两个都涂有颜色的共12个,恰好有一个面都涂有颜色的共6个,表面没涂颜色的1个,可得试验发生包含的事件是从27个小正方体中选一个正方体,共有27种结果,满足条件的事件是取出的小正方体表面仅有一个面涂有颜色,有6种结果,所以所求概率为.故选:C.本题主要考查了古典概型及其概率的计算公式的应用,其中解答根据几何体的结构特征,得出基本事件的总数和所求事件所包含基本事件的个数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.2、A【解析】∵f(x+4)=f(x),∴f(x)是以4为周期的周期函数,∴f(2019)=f(504×4+3)=f(3)=f(-1).又f(x)为奇函数,∴f(-1)=-f(1)=-2×12=-2,即f(2019)=-2.故选A3、B【解析】
先求出女生甲被选中的情况下的基本事件总数,再求出在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为,结合条件概率的计算方法,可得.【详解】女生甲被选中的情况下,基本事件总数,在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为,则在女生甲被选中的情况下,男生乙也被选中的概率为.故选B.本题考查了条件概率的求法,考查了学生的计算求解能力,属于基础题.4、C【解析】由,不满足,则变为,由,则变为,由,则,由,则,由,则,由,则,由,退出循环,则输出的值为,故选C.5、A【解析】
指数函数是单调递减,再判断其它选项错误,得到答案.【详解】A.,指数函数是单调递减函数,正确\B.反比例函数,在单调递减,在单调递减,但在上不单调,错误C.,在定义域内先减后增,错误D.,双勾函数,时先减后增,错误故答案选A本题考查了函数的单调性,属于简单题.6、A【解析】对于①,由直线与平面垂直的判定定理易知其正确;对于②,平面α与β可能平行或相交,故②错误;对于③,直线n可能平行于平面β,也可能在平面β内,故③错误;对于④,由两平面平行的判定定理易得平面α与β平行,故④错误.综上所述,正确命题的个数为1,故选A.7、C【解析】
根据时可得:;令可得函数在上单调递增;利用奇偶性的定义可证得为偶函数,则在上单调递减;将已知不等式变为,根据单调性可得自变量的大小关系,解不等式求得结果.【详解】当时,令,则在上单调递增为奇函数为偶函数则在上单调递减等价于可得:,解得:本题正确选项:本题考查函数奇偶性和单调性的综合应用问题,关键是能够构造函数,根据导函数的符号确定所构造函数的单调性,并且根据奇偶性的定义得到所构造函数的奇偶性,从而将函数值的大小关系转变为自变量之间的比较.8、B【解析】
根据正弦定理求解.【详解】由正弦定理得,选B.本题考查正弦定理,考查基本分析求解能力,属基础题.9、A【解析】
先求出二次函数在区间内有两个零点,所需要的条件,然后再平面直角坐标系内,画出可行解域,然后分析得出的取值范围.【详解】因为二次函数在区间内有两个零点,所以有:,对应的平面区域为下图所示:则令,则的取值范围为,故本题选A.本题考查了一元二次方程零点分布问题,正确画出可行解域是解题的关键.10、C【解析】
先判断时,在上恒成立;若在上恒成立,转化为在上恒成立.【详解】∵,即,(1)当时,,当时,,故当时,在上恒成立;若在上恒成立,即在上恒成立,令,则,当函数单增,当函数单减,故,所以.当时,在上恒成立;综上可知,的取值范围是,故选C.本题考查分段函数的最值问题,关键利用求导的方法研究函数的单调性,进行综合分析.11、D【解析】
利用频率和概率的定义分析判断得解.【详解】(1)在大量随机试验中,事件出现的频率与其他概率很接近,所以该命题是真命题;(2)概率可以作为当实验次数无限增大时频率的极限,所以该命题是真命题;(3)计算频率通常是为了估计概率,所以该命题是真命题.故选D本题主要考查频率和概率的关系,意在考查学生对这些知识的理解掌握水平.12、A【解析】
先由复数的除法,化简z,再由共轭复数的概念,即可得出结果.【详解】因为,所以.故选A本题主要考查复数的运算,以共轭复数的概念,熟记运算法则与概念即可,属于基础题型.二、填空题:本题共4小题,每小题5分,共20分。13、210.【解析】分析:先根据二项展开式通项公式得含项的项数,再代入得系数详解:因为,所以因此含项的系数是.点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.14、【解析】
根据直线方程可得斜率,由斜率可得倾斜角.【详解】由直线方程可得斜率为,所以,又,所以.故答案为:本题考查了由直线方程求倾斜角,属于基础题.15、【解析】
依题意可知,根据分布列计算可得;【详解】解:依题意可得故答案为:本题考查离散型随机变量的分布列与和概率公式的应用,属于基础题.16、【解析】
利用正弦定理计算出正四面体底面三角形的外接圆半径,再利用公式可得出正四面体的高.【详解】设正四面体底面三角形的外接圆的半径为,由正弦定理得,,因此,正四面体的高为,故答案为.本题考查正四面体高的计算,解题时要充分分析几何体的结构,结合勾股定理进行计算,考查空间想象能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)根据绝对值的意义,取到绝对值号,得到分段函数,进而可求解不等式的解集;(2)因为,得,再利用绝对值的定义,去掉绝对值号,即可求解。【详解】(1)因为,所以的解集为.(2)因为,所以,即,则,所以.本题主要考查了绝对值不等式问题,对于含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.18、(1),;(2)当时,符合建桥要求.【解析】
(1)利用正切值之比可求得,;根据可表示出和,代入整理可得结果;(2)根据(1)的结论可得,利用导数可求得时,取得最小值,得到结论.【详解】(1)与的正切值之比为则,,,,(2)由(1)知:,,令,解得:令,且当时,,;当时,,函数在上单调递减;在上单调递增;时,函数取最小值,即当时,符合建桥要求本题考查函数解析式和最值的求解问题,关键是能够通过根据题意建立起所求函数和变量之间的关系,利用导数来研究函数的最值.19、(1)-2;(2)极小值为,极大值为.【解析】分析:(1)求出曲线y=f(x)在点P(2,f(2))处的导数值等于切线的斜率为﹣6,即可求出;(2)通过a=1时,利用导函数为0,判断导数符号,即可求f(x)的极值.详解:(Ⅰ)因为f′(x)=﹣x2+x+2a,曲线y=f(x)在点P(2,f(2))处的切线的斜率k=f′(2)=2a﹣2,2a﹣2=﹣6,a=﹣2(Ⅱ)当a=1时,,f′(x)=﹣x2+x+2=﹣(x+1)(x﹣2)x(﹣∞,﹣1)﹣1(﹣1,2)2(2,+∞)f′(x)﹣0+0﹣f(x)单调减
单调增
单调减所以f(x)的极大值为,f(x)的极小值为.点睛:本题考查导数的综合应用,切线方程以及极值的求法,注意导函数的零点并不一定就是原函数的极值点.所以在求出导函数的零点后一定要注意分析这个零点是不是原函数的极值点.20、(1)分布列见解析,(2)①,②万元【解析】
(1)由题意列出X的可能取值为,,,,,,结合表格写出概率及分布列,再求解期望(2)①建立二项分布求解三辆车中至多有一辆事故车的概率②先求出一辆二手车利润的期望,再乘以100即可【详解】(1)由题意可知:X的可能取值为,,,,,由统计数据可知:,,,,,.所以的分布列为:.(2)①由统计数据可知任意一辆该品牌车龄已满三年的二手车为事故的概率为,三辆车中至多有一辆事故车的概率为:.②设Y为给销售商购进并销售一辆二手车的利润,Y的可能取值为所以Y的分布列为:YP所以.所以该销售商一次购进辆该品牌车龄已满三年的二手车获得利润的期望值为万元.本题考查离散型随机变量及分布列,考查二项分布,考查计算能力,是基础题21、(1)见解析;(2)【解析】分析:(1)当时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司采购价格管理制度
- 娱乐设备器材管理制度
- 实验标本出境管理制度
- 安全隐患整改管理制度
- 大堂保安状态管理制度
- 市场刀具使用管理制度
- 公园室外消防管理制度
- 巡察整改合同管理制度
- 工地钥匙使用管理制度
- 工厂薪酬制度管理制度
- 注塑领班工作总结
- 2025年中国经济信息社福建分公司招聘笔试参考题库含答案解析
- 《GIS实践教学》课件
- 中国糖尿病防治指南(2024版)图文完整版
- 《糖尿病酮症酸中毒》课件
- 2023-2024学年天津市和平区八年级(下)期末数学试卷(含答案)
- 2021去远方上海研学旅行方案申请及综合反思表
- 药棒穴位按摩技术
- 新闻记者职业资格《新闻采编实务》考试题库(含答案)
- 【MOOC】人工智能:模型与算法-浙江大学 中国大学慕课MOOC答案
- 《物理化学》第二章-热力学第一定律课件
评论
0/150
提交评论