《几何概型(第1课时)》参考学案2_第1页
《几何概型(第1课时)》参考学案2_第2页
《几何概型(第1课时)》参考学案2_第3页
《几何概型(第1课时)》参考学案2_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1/43.3几何概型(1)学习要求1、了解几何概型的概念及基本特点;2、熟练掌握几何概型的概率公式;3、正确判别古典概型与几何概型,会进行简单的几何概率计算.【课堂互动】自学评价试验1取一根长度为的绳子,拉直后在任意位置剪断.剪得两段的长都不小于的概率有多大?试验2射箭比赛的箭靶涂有五个彩色得分环,从外向内为白色、黑色、蓝色、红色,靶心为金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122cm,靶心直径为12.2cm,运动员在70m外射.假设射箭都能中靶,且射中靶面内任意一点都是等可能的,那么射中黄心的概率有多大?试验3有一杯1升的水,其中漂浮有1个微生物,用一个小杯从这杯水中取出0.1升,求小杯水中含有这个微生物的概率.【分析】第一个试验,从每一个位置剪断都是一个基本事件,剪断位置可以是长度为的绳子上的任意一点.第二个试验中,射中靶面上每一点都是一个基本事件,这一点可以是靶面直径为的大圆内的任意一点.第三个试验,微生物在这杯水中任何一滴都是一个基本事件,这一滴可以是这1升水中的任何一滴。在这三个问题中,基本事件有无限多个,虽然类似于古典概型的"等可能性",但是显然不能用古典概型的方法求解.1.几何概型的概念:对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段,平面图形,立体图形等.用这种方法处理随机试验,称为几何概型.2.几何概型的基本特点:(2)试验中所有可能出现的结果(基本事件)有无限多个;(2)每个基本事件出现的可能性相等.3.几何概型的概率:一般地,在几何区域中随机地取一点,记事件"该点落在其内部一个区域内"为事件,则事件发生的概率.说明:(2)的测度不为;(2)其中"测度"的意义依确定,当分别是线段,平面图形,立体图形时,相应的"测度"分别是长度,面积和体积.(3)区域为"开区域";(4)区域内随机取点是指:该点落在区域内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的测度成正比而与其形状位置无关.【经典范例】例1:某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率.30m2m20m例2:一海豚在水池中自由游弋,水池长30m,宽20m的长方形,求此刻海豚嘴尖离岸小于30m2m20m例3:取一个边长为2a的正方形及其内切圆(如图),随机地向正方形内丢一粒豆子,求豆子落入圆内的概率.课堂小结:1、几何概型的意义也可以这样理解:向区域G中任意投掷一个点M,点M落在G内的部分区域g”的概率P定义为:g的度量与G的度量之比,即:.2、我们可以通过实验计算圆周率的近似值.实验如下:向如图所示的圆内投掷个质点,计算圆的内接正方形中的质点数为,由几何概型公式可知:,即.课堂训练1、若,则点在圆面内的概率是多少?

2、靶子由三个半径分别为R,2R,3R的同心圆组成,如果你向靶子随机地掷一个飞镖,命中半径分别为R区域,2R区域,3R区域的概率分别为,则P1=,P2=,P3=3.在1L高产小麦种子中混入一粒带麦锈病的种子,从中随机取出10mL,含有麦锈病种子的概率是多少?4.在数轴上,设点x∈[-3,3]中按均匀分布出现,记a∈(-1,2]为事件A,则P

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论